Extracted from:

Hello, Android

Introducing Google’s
Mobile Development Platform, 3rd Edition

This PDF file contains pages extracted from Hello, Android, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Hello, Android

Introducing Google’s Mobile
Development Platform

Third Edition

-
5]
=
Ay
=
o}
)
£
o]
A
\g

Ed Burnette

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Portions of the book’s cover are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 2.5 Attribution License. See
http:/code.google.com/policies.html#restrictions for details.

Gesture icons in Chapter 11 courtesy of GestureWorks (www.gestureworks.com).

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Seth Maislin (indexer)

Kim Wimpsett (copyeditor)

David Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-56-2

Printed on acid-free paper.

Book version: P8.0—January 2012

http://pragprog.com
http://code.google.com/policies.html#restrictions

2.1

Now that you have an idea of what Android is, let’s take a look at how it works.
Some parts of Android may be familiar, such as the Linux kernel, OpenGL,
and the SQL database. Others will be completely foreign, such as Android’s
idea of the application life cycle.

You'll need a good understanding of these key concepts in order to write well-
behaved Android applications, so if you read only one chapter in this book,
read this one.

The Big Picture

Let’s start by taking a look at the overall system architecture—the key layers
and components that make up the Android open source software stack. In
Figure 9, Android system architecture, on page 6, you can see the “20,000-

foot” view of Android. Study it closely—there will be a test tomorrow.

Each layer uses the services provided by the layers below it. Starting from
the bottom, the following sections highlight the layers provided by Android.

Linux Kernel

Android is built on top of a solid and proven foundation: the Linux kernel.
Created by Linus Torvalds in 1991, Linux can be found today in everything
from wristwatches to supercomputers. Linux provides the hardware abstrac-
tion layer for Android, allowing Android to be ported to a wide variety of
platforms in the future.

Internally, Android uses Linux for its memory management, process manage-
ment, networking, and other operating system services. The Android phone
user will never see Linux, and your programs will not make Linux calls directly.
As a developer, though, you’ll need to be aware it’s there.

Some utilities you need during development interact with Linux. For example,
the adb shell command’ will open a Linux shell in which you can enter other
commands to run on the device. From there you can examine the Linux file
system, view active processes, and so forth, subject to security restrictions.

Native Libraries

The next layer above the kernel contains the Android native libraries. These
shared libraries are all written in C or C++, compiled for the particular hard-
ware architecture used by the phone, and preinstalled by the phone vendor.

Some of the most important native libraries include the following:

1. http://d.android.com/guide/developing/tools/adb.html

« Click HERE to purchase this book now. discuss

http://d.android.com/guide/developing/tools/adb.html
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Applications and Widgets

\ Home - Contacts | | Browser | Widgets . Your App Here |
Application Framework

| fiSoaaar [Mangger | | Prodars | | ~ViewSystem . NgHfication |
g EENY reewe RN L
Libraries Android Runtime

\/ I\%grrwfaa;eer J \ F raNrIneg\jvao K J \ SQLite \ Core Libraries

\ OpenGL | ES \ \ FreeType \ \ Webkit Raluikigal

o oseL | sk e |
Linux Kernel

[Display Driver] [BIB%t\?grth J [Camera Driver} [Flashr%%rpory J [B'ndﬁ(lélfc)]
[Keypad Driver] [USB Driver J [WiFi Driver } [Audlo Drivers \ [ManPaog\;Acla?‘;ent }

Figure 9—Android system architecture

* Surface Manager: Android uses a compositing window manager similar
to Vista or Compiz, but it's much simpler. Instead of drawing directly to
the screen buffer, your drawing commands go into off-screen bitmaps
that are then combined with other bitmaps to form the display the user
sees. This lets the system create all sorts of interesting effects such as
see-through windows and fancy transitions.

e 2D and 3D graphics: Two- and three-dimensional elements can be com-
bined in a single user interface with Android. The library will use 3D
hardware if the device has it or a fast software renderer if it doesn’t. See
Chapter 4, Exploring 2D Graphics, on page ? and Chapter 10, 3D

e Media codecs: Android can play video and record and play back audio in
various formats including AAC, AVC (H.264), H.263, MP3, and MPEG-4.
See Chapter 5, Multimedia, on page ? for an example.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

The Big Picture * 7

e SQL database: Android includes the lightweight SQLite database engine,”
the same database used in Firefox and the Apple iPhone.’ You can use
this for persistent storage in your application. See Chapter 9, Putting SQL
to Work, on page ? for an example.

e Browser engine: For the fast display of HTML content, Android uses the
WebKit library.* This is the same engine used in the Google Chrome
browser, Apple’s Safari browser, the Apple iPhone, and Nokia’s S60 plat-
form. See Chapter 7, The Connected World, on page ? for an example.

These libraries are not applications that stand by themselves. They exist only
to be called by higher-level programs. Starting in Android 1.5, you can write
and deploy your own native libraries using the Native Development Toolkit
(NDK). Native development is beyond the scope of this book, but if you're
interested, you can read all about it online.?

Android Runtime

Also sitting on top of the kernel is the Android runtime, including the Dalvik
virtual machine and the core Java libraries.

The Dalvik VM is Google’s implementation of Java, optimized for mobile
devices. All the code you write for Android will be written in Java and run
within the VM. Dalvik differs from traditional Java in two important ways:

e The Dalvik VM runs .dex files, which are converted at compile time from
standard .class and jar files. .dex files are more compact and efficient than
class files, an important consideration for the limited memory and battery-
powered devices that Android targets.

e The core Java libraries that come with Android are different from both
the Java Standard Edition (Java SE) libraries and the Java Mobile Edition
(Java ME) libraries. There is a substantial amount of overlap, however.
In Appendix 1, Java vs. the Android Language and APIs, on page ?, you'll

find a comparison of Android and standard Java libraries.

2. http://www.sqlite.org

for a comparison of iPhone and Android development.
4. http://webkit.org

« Click HERE to purchase this book now. discuss

http://www.sqlite.org
http://www.zdnet.com/blog/burnette/iphone-vs-android-development-day-1/682
http://webkit.org
http://d.android.com/sdk/ndk
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Dalvik is a virtual machine (VM) designed and written by Dan Bornstein at Google.
Your code gets compiled into machine-independent instructions called bytecodes,
which are then executed by the Dalvik VM on the mobile device.

Although the bytecode formats are a little different, Dalvik is essentially a Java virtual
machine optimized for low memory requirements. It allows multiple VM instances to
run at once and takes advantage of the underlying operating system (Linux) for secu-
rity and process isolation.

Bornstein named Dalvik after a fishing village in Iceland where some of his ancestors
lived.

Application Framework

Sitting above the native libraries and runtime, youll find the Application
Framework layer. This layer provides the high-level building blocks you will
use to create your applications. The framework comes preinstalled with
Android, but you can also extend it with your own components as needed.

The most important parts of the framework are as follows:

e Activity Manager: This controls the life cycle of applications (see Section

navigation.

e Content providers: These objects encapsulate data that needs to be shared

between applications, such as contacts. See Content Providers, on page
?.

* Resource manager: Resources are anything that goes with your program
that is not code. See Section 2.4, Using Resources, on page ?.

e Location manager: An Android phone always knows where it is. See
Chapter 8, Locating and Sensing, on page ?.

e Notification manager: Events such as arriving messages, appointments,
proximity alerts, alien invasions, and more can be presented in an unob-
trusive fashion to the user.

Applications and Widgets

The highest layer in the Android architecture diagram is the Applications and
Widgets layer. Think of this as the tip of the Android iceberg. End users will

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

2.2

It's Alive! ® 9

One of the unique and powerful qualities of Android is that all applications have a
level playing field. What I mean is that the system applications have to go through

the same public API that you use. You can even tell Android to make your application
replace the standard applications if you want.

see only these programs, blissfully unaware of all the action going on below
the waterline. As an Android developer, however, you know better.

Applications are programs that can take over the whole screen and interact
with the user. On the other hand, widgets (which are sometimes called gad-
gets), operate only in a small rectangle of the Home screen application.

The majority of this book will cover application development, because that’s
what most of you will be writing. Widget development is covered in Chapter
12, There’s No Place Like Home, on page ?.

When someone buys an Android phone, it will come prepackaged with a
number of standard system applications, including the following:

e Phone dialer

e Email

e Contacts

Web browser

e Android Market

Using the Android Market, the user will be able to download new programs
to run on their phone. That’s where you come in. By the time you finish this
book, you’ll be able to write your own killer applications for Android.

Now let’s take a closer look at the life cycle of an Android application. It’s a
little different from what you're used to seeing.

It's Alive!

On your standard Linux or Windows desktop, you can have many applications
running and visible at once in different windows. One of the windows has
keyboard focus, but otherwise all the programs are equal. You can easily
switch between them, but it's your responsibility as the user to move the
windows around so you can see what you're doing and close programs you
don’t need.

Android doesn’t work that way.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

10 ¢

In Android, there is one foreground application, which typically takes over
the whole display except for the status line. When the user turns on their
phone, the first application they see is the Home application (see Figure 10,
The Home application, on page 11).

When the user runs an application, Android starts it and brings it to the
foreground. From that application, the user might invoke another application,
or another screen in the same application, and then another and another.
All these programs and screens are recorded on the application stack by the
system’s Activity Manager. At any time, the user can press the Back button
to return to the previous screen on the stack. From the user’s point of view,
it works a lot like the history in a web browser. Pressing Back returns them
to the previous page.

Process != Application

Internally, each user interface screen is represented by an Activity class (see
Activities, on page ?). Each activity has its own life cycle. An application is
one or more activities plus a Linux process to contain them. That sounds
pretty straightforward, doesn’t it? But don’t get comfortable yet; 'm about to

throw you a curve ball.

In Android, an application can be “alive” even if its process has been killed.
Put another way, the activity life cycle is not tied to the process life cycle.
Processes are just disposable containers for activities. This is probably different
from every other system you're familiar with, so let’s take a closer look before
moving on.

Life Cycles of the Rich and Famous

During its lifetime, each activity of an Android program can be in one of sev-
eral states, as shown in Figure 11, Life cycle of an Android activity, on page

in. That’s all managed by the system. However, you do get notified when the
state is about to change through the onXX() method calls.

You override these methods in your Activity class, and Android will call them
at the appropriate time:

¢ onCreate(Bundle): This is called when the activity first starts up. You can use
it to perform one-time initialization such as creating the user interface.
onCreate() takes one parameter that is either null or some state information
previously saved by the onSavelnstanceState() method.

e onStart(): This indicates the activity is about to be displayed to the user.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

It's Alive! ® 11

Figure 10—The Home application

¢ onResume(): This is called when your activity can start interacting with the
user. This is a good place to start animations and music.

e onPause(): This runs when the activity is about to go into the background,
usually because another activity has been launched in front of it. This is
where you should save your program’s persistent state, such as a database
record being edited.

e onStop(): This is called when your activity is no longer visible to the user
and it won’t be needed for a while. If memory is tight, onStop() may never
be called (the system may simply terminate your process).

* onRestart(): If this method is called, it indicates your activity is being redis-
played to the user from a stopped state.

* onDestroy(): This is called right before your activity is destroyed. If memory
is tight, onDestroy() may never be called (the system may simply terminate
your process).

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Starting

) onCreate()
(2) onStart()
) onRestorelnstanceState()*

(4) onResume()

Running
(3) onResume() (1) onSavelInstanceState()*
(2) onStart() (2) onPause()
(1) onRestart()
onResume()
Stopped (1) onSaveInstanceState()* Paused
(2) onStop()

onDestroy() <Process killed>

or
<Process killed>

Figure 11—Life cycle of an Android activity

¢ onSavelnstanceState(Bundle): Android will call this method to allow the activity
to save per-instance state, such as a cursor position within a text field.
Usually you won't need to override it because the default implementation
saves the state for all your user interface controls automatically.

* onRestorelnstanceState(Bundle): This is called when the activity is being reini-
tialized from a state previously saved by the onSavelnstanceState() method.
The default implementation restores the state of your user interface.

Activities that are not running in the foreground may be stopped, or the Linux
process that houses them may be killed at any time in order to make room
for new activities. This will be a common occurrence, so it’s important that
your application be designed from the beginning with this in mind. In some
cases, the onPause() method may be the last method called in your activity, so
that’s where you should save any data you want to keep around for next time.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

It's Alive! ® 13

Here’s a quick way to test that your state-saving code is working correctly. In current
versions of Android, an orientation change (between portrait and landscape modes)
will cause the system to go through the process of saving instance state, pausing,
stopping, destroying, and then creating a new instance of the activity with the saved
state. On the T-Mobile G1 phone, for example, flipping the lid on the keyboard will
trigger this, and on the Android emulator, pressing CTRL+F11 or the 7 or 9 key on the
keypad will do it.

In addition to managing your program'’s life cycle, the Android framework
provides a number of building blocks that you use to create your applications.
Let’s take a look at those next.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

