
Extracted from:

Hello, Android
Introducing Google’s

Mobile Development Platform, 3rd Edition

This PDF file contains pages extracted from Hello, Android, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.
Portions of the book’s cover are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 2.5 Attribution License. See
http://code.google.com/policies.html#restrictions for details.

Gesture icons in Chapter 11 courtesy of GestureWorks (www.gestureworks.com).

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Seth Maislin (indexer)
Kim Wimpsett (copyeditor)
David Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-56-2
Printed on acid-free paper.
Book version: P8.0—January 2012

http://pragprog.com
http://code.google.com/policies.html#restrictions

Over the next few chapters, we’ll cover more advanced topics such as network
access and location-based services. You can write many useful applications
without these features, but going beyond the basic features of Android will
really help you add value to your programs, giving them much more function-
ality with a minimum of effort.

What do you use your mobile phone for? Aside from making calls, more and
more people are using their phones as mobile Internet devices. Analysts predict
that in a few years mobile phones will surpass desktop computers as the
number-one way to connect to the Internet.1 This point has already been
reached in some parts of the world.2

Android phones are well equipped for the new connected world of the mobile
Internet. First, Android provides a full-featured web browser based on the
WebKit open source project.3 This is the same engine you will find in Google
Chrome, the Apple iPhone, and the Safari desktop browser but with a twist.
Android lets you use the browser as a component right inside your application.

Second, Android gives your programs access to standard network services
like TCP/IP sockets. This lets you consume web services from Google, Yahoo,
Amazon, and many other sources on the Internet.

In this chapter, you’ll learn how to take advantage of all these features and
more through four example programs:

• BrowserIntent: Demonstrates opening an external web browser using an
Android intent

• BrowserView: Shows you how to embed a browser directly into your
application

• LocalBrowser: Explains how JavaScript in an embedded WebView and Java
code in your Android program can talk to each other

• Suggest: Uses data binding, threading, and web services for an amusing
purpose

7.1 Browsing by Intent

The simplest thing you can do with Android’s networking API is to open a
browser on a web page of your choice. You might want to do this to provide
a link to your home page from your program or to access some server-based

1. http://archive.mobilecomputingnews.com/2010/0205.html
2. http://www.comscore.com/press/release.asp?press=1742
3. http://webkit.org

• Click HERE to purchase this book now. discuss

http://archive.mobilecomputingnews.com/2010/0205.html
http://www.comscore.com/press/release.asp?press=1742
http://webkit.org
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Figure 34—Opening a browser using an Android intent

application such as an ordering system. In Android all it takes is three lines
of code.

To demonstrate, let’s write a new example called BrowserIntent, which will
have an edit field where you can enter a URL and a Go button you press to
open the browser on that URL (see Figure 34, Opening a browser using an
Android intent, on page 6). Start by creating a new “Hello, Android” project
with the following values in the New Project wizard:

Project Name: BrowserIntent
Build Target: Android 2.3.3
Application Name: BrowserIntent
Package Name: org.example.browserintent
Create Activity: BrowserIntent
Minimum SDK: 10

Once you have the basic program, change the layout file (res/layout/main.xml) so
it looks like this:

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Download BrowserIntent/res/layout/main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<EditText

android:id="@+id/url_field"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1.0"
android:lines="1"
android:inputType="textUri"
android:imeOptions="actionGo" />

<Button
android:id="@+id/go_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/go_button" />

</LinearLayout>

This defines our two controls, an EditText control and a Button.

On EditText, we set android:layout_weight="1.0" to make the text area fill up all the
horizontal space to the left of the button, and we also set android:lines="1" to
limit the height of the control to one vertical line. Note that this has no effect
on the amount of text the user can enter here, just the way it is displayed.

Android 1.5 introduced support for soft keyboards and other alternate input
methods. The options for android:inputType="textUri" andandroid:imeOptions="actionGo"
are hints for how the soft keyboard should appear. They tell Android to replace
the standard keyboard with one that has convenient buttons for “.com” and
“/” to enter web addresses and has a Go button that opens the web page.4

As always, human-readable text should be put in a resource file, res/val-
ues/strings.xml.

Download BrowserIntent/res/values/strings.xml
<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">BrowserIntent</string>
<string name="go_button">Go</string>

</resources>

4. See http://d.android.com/reference/android/widget/TextView.html and http://android-
developers.blogspot.com/2009/04/updating-applications-for-on-screen.html for more
information on input options.

• Click HERE to purchase this book now. discuss

Browsing by Intent • 7

http://media.pragprog.com/titles/eband3/code/BrowserIntent/res/layout/main.xml
http://media.pragprog.com/titles/eband3/code/BrowserIntent/res/values/strings.xml
http://d.android.com/reference/android/widget/TextView.html
http://android-developers.blogspot.com/2009/04/updating-applications-for-on-screen.html
http://android-developers.blogspot.com/2009/04/updating-applications-for-on-screen.html
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Next we need to fill in the onCreate() method in the BrowserIntent class. This is
where we’ll build the user interface and hook up all the behavior. If you don’t
feel like typing all this in, the complete source code is available online at the
book’s website.5

Download BrowserIntent/src/org/example/browserintent/BrowserIntent.java
package org.example.browserintent;Line 1

import android.app.Activity;-

import android.content.Intent;-

import android.net.Uri;-

import android.os.Bundle;5

import android.view.KeyEvent;-

import android.view.View;-

import android.view.View.OnClickListener;-

import android.view.inputmethod.EditorInfo;-

import android.view.inputmethod.InputMethodManager;10

import android.widget.Button;-

import android.widget.EditText;-

import android.widget.TextView;-

import android.widget.TextView.OnEditorActionListener;-

public class BrowserIntent extends Activity {15

private EditText urlText;-

private Button goButton;-

@Override-

public void onCreate(Bundle savedInstanceState) {-

super.onCreate(savedInstanceState);20

setContentView(R.layout.main);-

// Get a handle to all user interface elements-

urlText = (EditText) findViewById(R.id.url_field);-

goButton = (Button) findViewById(R.id.go_button);-

// Setup event handlers25

goButton.setOnClickListener(new OnClickListener() {-

public void onClick(View view) {-

openBrowser();-

}-

});30

urlText.setOnEditorActionListener(new OnEditorActionListener() {-

public boolean onEditorAction(TextView v, int actionId,-

KeyEvent event) {-

if (actionId == EditorInfo.IME_NULL) {-

openBrowser();35

InputMethodManager imm = (InputMethodManager)-

getSystemService(INPUT_METHOD_SERVICE);-

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);-

return true;-

}40

return false;-

}-

5. http://pragprog.com/titles/eband3

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/eband3/code/BrowserIntent/src/org/example/browserintent/BrowserIntent.java
http://pragprog.com/titles/eband3
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

});-

}-

}45

Inside onCreate(), we call setContentView() on line 21 to load the view from its
definition in the layout resource, and then we call findViewById() on line 23 to
get a handle to our two user interface controls.

Line 26 tells Android to run some code when the user selects the Go button,
either by touching it or by navigating to it and pressing the center D-pad
button. When that happens, we call the openBrowser() method, which will be
defined in a moment.

If the user types an address and hits the Enter key (or the Go button on the
soft keyboard), we also want the browser to open. To do this, we define a lis-
tener starting on line 31 that will be called when an action is performed on
the edit field. If the Enter key or Go button is pressed, then we call the open-
Browser() method to open the browser; otherwise, we return false to let the edit
control handle the event normally.

Before returning, we also get a handle to the system’s InputMethodManager and
call the hideSoftInputFromWindow() method in order to close the soft input window,
because it has an annoying habit of staying open when we don’t need it any
more.

Now comes the part you’ve been waiting for: the openBrowser() method. As
promised, it’s three lines long:

Download BrowserIntent/src/org/example/browserintent/BrowserIntent.java
/** Open a browser on the URL specified in the text box */
private void openBrowser() {

Uri uri = Uri.parse(urlText.getText().toString());
Intent intent = new Intent(Intent.ACTION_VIEW, uri);
startActivity(intent);

}

The first line retrieves the address of the web page as a string (for example,
“http://www.android.com”) and converts it to a uniform resource identifier
(URI).

Note: Don’t leave off the “http://” part of the URL when you try this. If you
do, the program will crash because Android won’t know how to handle the
address. In a real program you could add that if the user omitted it.

The next line creates a new Intent class with an action of ACTION_VIEW, passing
it the Uri class just created as the object we want to view. Finally, we call the
startActivity() method to request that this action be performed.

• Click HERE to purchase this book now. discuss

Browsing by Intent • 9

http://media.pragprog.com/titles/eband3/code/BrowserIntent/src/org/example/browserintent/BrowserIntent.java
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

When the Browser activity starts, it will create its own view (see Figure 35,
Viewing a web page with the default browser, on page 11), and your program
will be paused. If the user presses the Back key at that point, the browser
window will go away, and your application will continue. But what if you want
to see some of your user interface and a web page at the same time? Android
allows you to do that by using the WebView class.

7.2 Web with a View

On your desktop computer, a web browser is a large, complicated, memory-
gobbling program with all sorts of features like bookmarks, plug-ins, Flash
animations, tabs, scroll bars, printing, and so forth.

When I was working on the Eclipse project and someone suggested replacing
some common text views with embedded web browsers, I thought they were
crazy. Wouldn’t it make more sense, I argued, to simply enhance the text
viewer to do italics or tables or whatever it was that was missing?

It turns out they weren’t crazy because:

• A web browser can be (relatively) lean and mean if you strip out everything
but the basic rendering engine.

• If you enhance a text view to add more and more things that a browser
engine can do, you end up with either an overly complicated, bloated text
viewer or an underpowered browser.

Android provides a wrapper around the WebKit browser engine called WebView
that you can use to get the real power of a browser with as little as 1MB of
overhead. Although 1MB is still significant on an embedded device, there are
many cases where using a WebView is appropriate.

WebView works pretty much like any other Android view except that it has extra
methods specific to the browser. I’m going to show how it works by doing an
embedded version of the previous example. This one will be called BrowserView
instead of BrowserIntent, since it uses an embedded View instead of an Intent.
Start by creating a new “Hello, Android” project using these settings:

Project Name: BrowserView
Build Target: Android 2.3.3
Application Name: BrowserView
Package Name: org.example.browserview
Create Activity: BrowserView
Minimum SDK: 10

The layout file for BrowserView is similar to the one in BrowserIntent, except
we’ve added a WebView at the bottom:

10 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Figure 35—Viewing a web page with the default browser

Download BrowserView/res/layout/main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<LinearLayout

android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<EditText

android:id="@+id/url_field"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1.0"
android:lines="1"
android:inputType="textUri"
android:imeOptions="actionGo" />

<Button
android:id="@+id/go_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/go_button" />

</LinearLayout>
<WebView

android:id="@+id/web_view"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1.0" />

</LinearLayout>

We use two LinearLayout controls to make everything appear in the right place.
The outermost control divides the screen into top and bottom regions; the
top has the text area and button, and the bottom has the WebView. The inner-
most LinearLayout is the same as before; it just makes the text area go on the
left and the button on the right.

• Click HERE to purchase this book now. discuss

Web with a View • 11

http://media.pragprog.com/titles/eband3/code/BrowserView/res/layout/main.xml
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Joe asks:

Why Didn’t BrowserIntent Need
<uses-permission>?

The previous example, BrowserIntent, simply fired off an intent to request that some
other application view the web page. That other application (the browser) is the one
that needs to ask for Internet permissions in its own AndroidManifest.xml.

The onCreate() method for BrowserView is exactly the same as before, except
that now there is one extra view to look up:

Download BrowserView/src/org/example/browserview/BrowserView.java
import android.webkit.WebView;
// ...

public class BrowserView extends Activity {
private WebView webView;
// ...
@Override
public void onCreate(Bundle savedInstanceState) {

// ...
webView = (WebView) findViewById(R.id.web_view);
// ...

}
}

The openBrowser() method, however, is different:

Download BrowserView/src/org/example/browserview/BrowserView.java
/** Open a browser on the URL specified in the text box */
private void openBrowser() {

webView.getSettings().setJavaScriptEnabled(true);
webView.loadUrl(urlText.getText().toString());

}

The loadUrl() method causes the browser engine to begin loading and displaying
a web page at the given address. It returns immediately even though the actual
loading may take some time (if it finishes at all).

Don’t forget to update the string resources:

Download BrowserView/res/values/strings.xml
<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">BrowserView</string>
<string name="go_button">Go</string>

</resources>

12 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/eband3/code/BrowserView/src/org/example/browserview/BrowserView.java
http://media.pragprog.com/titles/eband3/code/BrowserView/src/org/example/browserview/BrowserView.java
http://media.pragprog.com/titles/eband3/code/BrowserView/res/values/strings.xml
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

We need to make one more change to the program. Add this line to AndroidMan-
ifest.xml before the <application> tag:

Download BrowserView/AndroidManifest.xml
<uses-permission android:name="android.permission.INTERNET" />

If you leave this out, Android will not give your application access to the
Internet, and you’ll get a “Web page not available” error.

Try running the program now, and enter a valid web address starting with
“http://”; when you press Return or select the Go button, the web page should
appear (see Figure 36, Embedding a browser using WebView, on page 14).

WebView has dozens of other methods you can use to control what is being
displayed or get notifications on state changes.

You can find a complete list in the online documentation for WebView, but here
are the methods you are most likely to need:

• addJavascriptInterface(): Allows a Java object to be accessed from JavaScript
(more on this one in the next section)

• createSnapshot(): Creates a screenshot of the current page

• getSettings(): Returns a WebSettings object used to control the settings

• loadData(): Loads the given string data into the browser

• loadDataWithBaseURL(): Loads the given data using a base URL

• loadUrl(): Loads a web page from the given URL

• setDownloadListener(): Registers callbacks for download events, such as when
the user downloads a .zip or .apk file

• setWebChromeClient(): Registers callbacks for events that need to be done
outside the WebView rectangle, such as updating the title or progress bar
or opening a JavaScript dialog box

• setWebViewClient(): Lets the application set hooks in the browser to intercept
events such as resource loads, key presses, and authorization requests

• stopLoading(): Stops the current page from loading

One of the most powerful things you can do with the WebView control is to talk
back and forth between it and the Android application that contains it. Let’s
take a closer look at this feature now.

• Click HERE to purchase this book now. discuss

Web with a View • 13

http://media.pragprog.com/titles/eband3/code/BrowserView/AndroidManifest.xml
http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

Figure 36—Embedding a browser using WebView

14 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eband3
http://forums.pragprog.com/forums/eband3

