
Extracted from:

Practical Microservices
Build Event-Driven Architectures

with Event Sourcing and CQRS

This PDF file contains pages extracted from Practical Microservices, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Practical Microservices
Build Event-Driven Architectures

with Event Sourcing and CQRS

Ethan Garofolo

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Adaobi Obi Tulton
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-645-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Julie, Sofia, Eva, and Angelo—

you are life and joy

Representing Messages in Code
So what does a message look like? We can represent them as JSON objects:

{
"id": "875b04d0-081b-453e-925c-a25d25213a18",
"type": "PublishVideo",
"metadata": {

"traceId": "ddecf8e8-de5d-4989-9cf3-549c303ac939",
"userId": "bb6a04b0-cb74-4981-b73d-24b844ca334f"

},
"data": {

"ownerId": "bb6a04b0-cb74-4981-b73d-24b844ca334f",
"sourceUri": "https://sourceurl.com/",
"videoId": "9bfb5f98-36f4-44a2-8251-ab06e0d6d919"

}
}

This is a command you’ll define in Chapter 10, Performing Background Jobs
with Microservices, on page ?.

At the root of this object we have four fields:

id
Every message gets a unique ID, and we use UUIDs for them.

type
A string and something you choose when you define your messages. When
we said earlier that events represent things that have happened, it’s the
type that tells us what that thing that happened was. And in the case of
commands, the type tells us we want to have happen.

metadata
An object that contains, well, metadata. The contents of this object have
to do with the mechanics of making our messaging infrastructure work.
Examples of fields we’ll commonly find in here include traceId, which ties
messages resulting from the same user input together. Every incoming
user request will get a unique traceId, and any messages written as part
of that user request will get written with that request’s traceId. If there are
any components that write other messages in response to those messages,
then those messages will have the same traceId. In that way, we can easily
track everything that happened in the system in response to a particular
user request. We’ll put this into action in Chapter 13, Debugging Compo-
nents, on page ?, which deals with debugging strategies. We will also

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

commonly have a userId string, representing the ID of the user who caused
the message to be written.

data
A JSON object itself, and the “payload” of the event. The contents of a
message’s data field are analogous to the parameters in a function call.

You can tell that this event is a command because the type is in the imperative
mood. This is a convention we will always follow. Since a command is a request
to do something, its type is in the imperative mood. This is in contrast to the
event that might get generated in response to this command:

{
"id": "23d2076f-41bd-4cdb-875e-2b0812a27524",
"type": "VideoPublished",
"metadata": {

"traceId": "ddecf8e8-de5d-4989-9cf3-549c303ac939",
"userId": "bb6a04b0-cb74-4981-b73d-24b844ca334f"

},
"data": {

"ownerId": "bb6a04b0-cb74-4981-b73d-24b844ca334f",
"sourceUri": "https://sourceurl.com/",
"videoId": "9bfb5f98-36f4-44a2-8251-ab06e0d6d919"

}
}

Notice the type on this event is in the past tense. That’s because events are
things that have already happened.

Naming Messages
Giving types to our messages is the most important of the engineering work
we’ll do. As we add features to our system, we’ll use messages to represent
the various processes the system carries out. The preceding messages come
from the video cataloging process we’ll build in Chapter 10, Performing
Background Jobs with Microservices, on page ?.

We come up with types for the messages in collaboration with our company’s
business team. Message types are named after the business processes they
represent. Furthermore, we select types using language familiar to experts
in the domain we are modeling. This is not something we can do alone as
developers.

If we were modeling banking, we might have messages like TransferFunds,
AccountOpened, and FundsDeposited. We absolutely will not have types that contain
“create,” “update,” or “delete.” We’re purging that CRUD from our vocabulary.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Storing State as Events
Up to this point, this concept of commands and events may be familiar. You
may have already used technology such as Apache Kafka4 to have components
communicate via events. We’re going to take it further though.

You may receive a command like PetPuppies, a command that should never be
rejected. When a command is processed, the output is one or more events,
such as PuppiesPet. If we wanted to know whether or not the puppies have been
pet, how could we tell? Take a moment and think about it…

All we’d have to look for is that event. Instead of treating the messages as
transient notifications, discarding them when we’re done, we save them. Then
we can constitute and reconstitute current state or state at any point in time
to our heart’s content. This is event sourcing—sourcing state from events.

If you’ve done MVC CRUD apps, then you’re probably used to receiving
incoming requests and then updating one or more rows in a database. At any
given point, you were storing the current state of your system, having discarded
all knowledge of how the system got into that state. Because we’re already
going to use messages to communicate between portions of our system, why
not keep them around? Then we could use the events to know what the state
of our system is now, and at any point in the past.

Storing Messages in Streams
One last note about messages before we begin writing them. When we start
writing messages on page 12, we’ll organize them into what we call streams.
Streams group messages together logically, usually representing an entity or
process in your system. Within a stream, messages are stored in the order
they were written.

For example, Video Tutorials users will have an identity. We’ll explicitly
model that identity in Chapter 6, Registering Users, on page ?. All the events
related to a particular user’s identity will be in the same stream, and those
are the only events that will be in that stream. Using the naming conventions
of the Eventide Project,5 a Ruby toolkit for building autonomous microservices,
we call this type of stream an entity stream. We use UUIDs6 as identifiers in
our system, specifically version 4 UUIDs, and so a natural name for one of
these user identity streams would be identity-81cb4647-1296-4f3b-8039-0eedae41c97e.

4. https://kafka.apache.org/
5. http://docs.eventide-project.org/core-concepts/streams/stream-names.html
6. https://en.wikipedia.org/wiki/Universally_unique_identifier

• Click HERE to purchase this book now. discuss

Storing State as Events • 9

https://kafka.apache.org/
http://docs.eventide-project.org/core-concepts/streams/stream-names.html
https://en.wikipedia.org/wiki/Universally_unique_identifier
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

While any part of the system is free to read the events in such a stream, a
property we’ll use in Chapter 8, Authenticating Users, on page ?, an entity
stream only has a single writer.

Here is a pair of such identity streams:

There are other kinds of streams, though. If all goes as planned, Video Tuto-
rials will have more than one user, each with a stream of the form identity-UUID.
Every event in such an entity stream is also part of the identity category stream.
To get the category stream that an entity stream belongs to, just take every-
thing to the left of the first dash. So for identity-81cb4647-1296-4f3b-8039-0eedae41c97e,
identity is the category. The identity category stream contains every event written
to every identity in our system.

We talked about commands on page ?, and commands are also written to
streams. They aren’t written to entity streams, though—they are written to
command streams. In the case of this identity Component, we’ll write to streams
of the form identity:command-81cb4647-1296-4f3b-8039-0eedae41c97e. This is an entity
command stream, and it only contains commands related to a particular
entity. What is the category of this stream? Is it the same as the entity stream
from before? Again, to get a category from a stream, take everything to the
left of the first dash. For this entity command stream, that gives us identity:com-
mand, which is not the same as identity. So no, entity streams are not in the
same category as entity command streams.

Streams, like messages, don’t get deleted. Messages are added to them in an
append-only manner.

Now, if there’s anything we can take from the 1984 Ghostbusters film, crossing
the streams is Bad™ and continued abstract talk about streams will likely
lead to that. Now that we have the basics of messages, let’s get to a concrete
example and resolve the cliffhanger we started on page ?.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Defining Component Boundaries
Stream boundaries are Component boundaries. If we have a stream category
such as identity, what we’re saying is that there’s going to be a single Compo-
nent authorized to write to streams in the identity category. Those are Compo-
nent boundaries. Similarly, if we have command streams in the category
identity:command, only that same Component is authorized to handle those
commands. These strict rules are part of avoiding monoliths. In a monolith,
anyone can add columns to the users table and make updates to its rows. Not
so in our architecture! The lack of these boundaries are why we can’t just
Extract Microservices™ from a monolith. As you’ll see when we look at dis-
tributing our system in Chapter 12, Deploying Components, on page ?, it’s
precisely these boundaries that allow us to extract things.

Sometimes, although not in this book, a Component will own more than one
entity. This is rare, and it also doesn’t break our rule in the previous para-
graph. A category has a single owner, even on the rare occasions that a par-
ticular owner happens to own another category.

Recording Video Views
How are we going to record that a video was viewed? Since we’re not going to
just use an MVC CRUD-style database table, it stands to reason that we’re
going to write a message. Should that be an event or a command?

Questions are best answered by going back to fundamental principles. In our
initial talks with the business team, one of the longer-term (read: outside the
scope of this book) visions is to have users buy memberships to see premium
content, and the creators of that content would get paid based on how many
times their videos were viewed. So we know an event eventually needs to be
written, and since we’re recording that a video was viewed, VideoViewed seems
like a good type for this kind of event.

The next question then, who writes that event? Should the record-viewings
application write events directly, or should it write commands that some
Component picks up and handles? We previously discussed on page 9 how
a given event stream is populated by one and only one writer. So far, it could
go either way.

Let’s say that we have the application write the events and that it writes to
streams of the form viewingX, where X is a video’s ID. Are we capturing the
necessary state? Check. Is there only a single writer to a given stream? Check.
So far so good.

• Click HERE to purchase this book now. discuss

Defining Component Boundaries • 11

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

What if we wanted to run potential video views through some sort of algorithm
to detect fake views before committing them to system state? Obviously none
of our users would ever do that, but, you hear stories. Investors like to know
we’ve addressed this kind of thing, and content creators would want to know
the view counts are legit.

That seems like a bit much to put into a request/response cycle and something
that we would want to put into a Component. That Component would currently
do nothing besides receiving, say RecordVideoViewing commands, and writing
VideoViewed events. We don’t need to support this right now, so why take on
that extra burden?

The only reason to do so would be if this choice affects long-term maintain-
ability. Does it? If we had the application write the viewed events and later
decided to move this into a Component, what would we need to change?

1. Refactor the Application to write a command to a command stream rather
than an event to an event stream.

2. Write the Component.

We’d have to do step 2 anyway, and step 1 doesn’t sound that hard. If we
were doing this CRUD style, we might have had to set up a different API to
call into with the video view. We’d have the same issue where verifying the
view takes too long to put into a request/response cycle, so that API would
likely have done some sort of background job. When it’s done with the verifi-
cation, maybe it would make another call into our application to record the
result of that verification? Or we modify our application to pull from a different
database? Or we directly couple our application to that API via a shared
database table? Those all sound like messes from a design perspective, let
alone the operational concerns of having to make two network hops. With a
pub/sub flow that stores state as events and makes sure a given event stream
only has a single writer, we’re able to proceed confidently in the short term
without setting ourselves up with a costly refactoring later.

Let’s not worry about the Component right now and just have the Application
record video viewings. We’ll get to our first Component soon enough in
Chapter 6, Registering Users, on page ?.

Writing Your First Message
Okay, when we left the record-viewings application, we were in the function that
would record that a video was viewed. Here’s where we left off:

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

first-pass/src/app/record-viewings/index.js
function createActions ({

db
}) {

function recordViewing (traceId, videoId) {
}

return {
recordViewing

}
}

We decided on page 11 that we’ll use VideoViewed events to record video views.
We’ll write these events to streams of the form viewing-X, where X is the video’s
ID. So all we need to do in this function is build the event we’re going to write
and then write it to the Message Store:

The Code Directory Has Changed

From this point going forward in the book, the code is in the
code/video-tutorials/ folder.

If you’re using Docker for the database, be sure to stop the con-
tainer for the first-pass folder and switch to code/video-tutorials and re-
run docker-compose rm -sf && docker-compose up.

video-tutorials/src/app/record-viewings/index.js
function createActions ({

messageStore❶
}) {

function recordViewing (traceId, videoId, userId) {
const viewedEvent = {❷
id: uuid(),
type: 'VideoViewed',
metadata: {

traceId,
userId

},
data: {

userId,
videoId

}
}
const streamName = `viewing-${videoId}`❸

return messageStore.write(streamName, viewedEvent)❹
}
return {

recordViewing
}

}

• Click HERE to purchase this book now. discuss

Writing Your First Message • 13

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/record-viewings/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/record-viewings/index.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

❶ First of all, notice that we’ve taken out the reference to the db and replaced
it with a messageStore reference. We’re writing an event and not updating
a row in a videos table.

❷ Then we construct the event. It’s just a plain old JavaScript object that
can be serialized to JSON. You’ll notice the fields we mentioned on page
7. There isn’t that much to an event.

❶ Next, we construct the name of the stream that we’re going to write this
event to.

❹ Finally, we actually call messageStore.write to write the event. That function
takes the streamName that we want to write to and the message we want to
write.

There’s one last change we need to make in this file. In the top-level function
we also need to change the db reference to messageStore:

video-tutorials/src/app/record-viewings/index.js
function createRecordViewings ({

messageStore
}) {

const actions = createActions({
messageStore

})
// ... rest of the body omitted

}

The top-level function receives messageStore and passes it along to actions.

(Re)configuring the Record-Viewings Application
And we also have a change to our configuration to make. We need to pull in
the Message Store, instantiate it, and pass it to the record-viewings application:

video-tutorials/src/config.js
// ...Line 1

const createPostgresClient = require('./postgres-client')-

const createMessageStore = require('./message-store')-

function createConfig ({ env }) {-

const knexClient = createKnexClient({5

connectionString: env.databaseUrl-

})-

const postgresClient = createPostgresClient({-

connectionString: env.messageStoreConnectionString-

})10

const messageStore = createMessageStore({ db: postgresClient })-

-

const homeApp = createHomeApp({ db: knexClient })-

const recordViewingsApp = createRecordViewingsApp({ messageStore })-

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/app/record-viewings/index.js
http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/config.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

return {15

// ...-

messageStore,-

}-

}-

Line 2 requires the code that will create our database connection to the Message
Store, and line 3 requires our Message Store code. We set up the database
connection at line 8 by giving it the connection info we get from the environ-
ment. We’ll add that to env.js and .env is just a moment. Line 11 then instanti-
ates the Message Store by passing it the postgresClient reference. Line 14 passes
messageStore to instantiate the recordViewingsApp, and then we add messageStore to
the config function’s return value at line 17.

A quick change in src/env.js:

video-tutorials/src/env.js
module.exports = {

// ...
messageStoreConnectionString:

requireFromEnv('MESSAGE_STORE_CONNECTION_STRING')
}

And be sure to add the corresponding value to .env:

MESSAGE_STORE_CONNECTION_STRING=
postgres://postgres@localhost:5433/message_store

Make sure to put that on a single line. So, good to go, right?

Hanging a Lantern
In showbiz, when writers call attention to glaring inconsistencies, that’s called
“hanging a lantern on it.” We have one, ah, slight problem. We don’t actually
have the Message Store code yet. Let’s punt that to the next chapter because
this one is already pretty long, and we’ve covered a lot in it.

What You’ve Done So Far
You unmasked the monolith. You learned that monoliths are data models
and that they speed up the near term at the expense of the long term by
introducing high levels of coupling. You also learned that the most commonly
recommended methods for dealing with this coupling don’t actually do any-
thing to address the coupling.

Then you got your feet wet with the basics of message-based architecture.
Messages are what make autonomous microservices possible, and autonomouse

• Click HERE to purchase this book now. discuss

Hanging a Lantern • 15

http://media.pragprog.com/titles/egmicro/code/video-tutorials/src/env.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

microservices are what make long-term productivity possible. This was no
small amount of learning.

Taking those principles then, you came back to our problem at hand—how
do we record video views without writing ourselves into an inescapable corner?
You learned about streams and concluded the chapter by writing a VideoViewed
event to a stream in the viewings category. You stepped into a whole new world.

Aside from building the mechanics of the Message Store, which we’ll start in
the next chapter, being able to analyze business processes and model them
as messages is the most important skill you can acquire. That’s where the
real engineering is done. To that end, choose some workflow that exists in
the project you’re currently working on. Instead of thinking of it in CRUD
terms, can you model it as a sequence of events? Strike create, update, and
delete from your vocabulary, and state what your current project does in
terms that non-developers would use. Does it get you thinking differently
about the project? Does it reveal holes in your understanding?

Lanterns are great and all, but we need something to store our messages. As
we continue the journey to record video views and display the total view count
on the home page, our next step is to go from mythical Message Store to
actual Message Store. You may find it mundane, or you may find it exciting.
Regardless of which, you’ll find it in the next chapter.

• 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

