
Extracted from:

Practical Microservices
Build Event-Driven Architectures

with Event Sourcing and CQRS

This PDF file contains pages extracted from Practical Microservices, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Practical Microservices
Build Event-Driven Architectures

with Event Sourcing and CQRS

Ethan Garofolo

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Adaobi Obi Tulton
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-645-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Julie, Sofia, Eva, and Angelo—

you are life and joy

CHAPTER 1

Two roads diverged in a wood, and I—
I took the one less traveled by

 ➤ Robert Frost

You Have a New Project
Congratulations! Today is your day. You’ve got a new project to get underway.
A site full of videos; users to please—a system that will make future changes
a breeze.

You’re going to build Video Tutorials, the next-gen internet learning sensation.
Content creators will publish videos, and the rest of the users will level up
from watching those videos.

Some features of this system, like user registration and authentication, will
seem familiar. Some features may be new, like transcoding videos. Through
it all, rest assured that you have a top-notch business team to work with.
They’ll be busy discovering the benefits that our users want, and your job is
to build a system that will support this platform for decades to come. Pieces
of that system will necessarily evolve, so supporting that long-term change
is going to be our main focus.

Kicking Off Video Tutorials
Let’s start by getting the husk of this project off the ground. Our business
team wants to support content creators by slicing and dicing video viewing
metrics in all sorts of ways—some which they haven’t even identified yet. The
first metric they care about is a global count of video views.

Since we don’t actually have any video content yet, we can just simulate video
views with a button click. We’re going to build enough server to serve a page
like the screenshot on page 8. There’s a button to click to simulate having
viewed a video. To get this working we need:

• A basic project structure
• An HTTP route to GET this page
• An HTTP route to receive POSTs from the award-winning button

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Let the fun begin.

Building the Bones
As mentioned in the book’s introduction on page ?, our code samples are
all in Node.js. It’s a fine platform for evented architectures, and probably more
importantly, if you’ve done web development, you can probably at least grok
what is going on when you read JavaScript. In the Application layer—the
layer of the system that users interact with—we use a library called Express1

to route requests to the functions that handle them. This isn’t a book specif-
ically about programming in Node.js, but in case you’re unfamiliar with
Express, it’s worth a little ink to introduce it.

Express is a “fast, unopinionated, minimalist web framework for Node.js,”
and we use it to map URLs to functions that handle them and to render HTML
in response. We certainly could use single-page apps, but we want to keep
the focus on microservices rather than JavaScript UI frameworks.

Our first job is to build a simple Express server, and an Express server is
made up of some configuration, some middleware, and some routes:

first-pass/src/app/express/index.js
const express = require('express')
const { join } = require('path')

const mountMiddleware = require('./mount-middleware')
const mountRoutes = require('./mount-routes')

function createExpressApp ({ config, env }) {❶

1. https://expressjs.com/

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/index.js
https://expressjs.com/
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

const app = express()❷

// Configure PUG
app.set('views', join(__dirname, '..'))❸
app.set('view engine', 'pug')

mountMiddleware(app, env)❹
mountRoutes(app, config)❺

return app
}

module.exports = createExpressApp

❶ A typical Node.js file defines a top-level function and exports it. createEx-
pressApp is that top-level function for this file, and we export it at the very
bottom. Its return value is a configured Express application.

To configure that Express application, this function receives some config-
uration. config has references to the rest of the pieces of our system, and
env has all the environment variables our program was started with. If
you’re just dying to dive into these exciting files, they’re at code/first-pass/src/
config.js and code/first-pass/src/env.js, respectively, and we’ll work through them
on page 11.

❷ This instantiates the Express application. Now we configure it.

❹ This is where we mount middleware into the Express application. Middle-
wares are functions that get run on an incoming HTTP request and have
the chance to do various setup and side effects before we get to the func-
tion that ultimately handles said request. As an example, we’ll use a middle-
ware to ensure users are authenticated on certain routes in Chapter 8,
Authenticating Users, on page ?.

❺ HTTP requests come into a server with a given URL, and you have to tell
an Express server what to do for a given URL. That’s what mounting the
routes is for. You give Express a URL pattern and function to call to
handle requests that go to that URL pattern. The file implementing this
function is at code/first-pass/src/app/express/mount-routes.js. We don’t have any
routes quite yet, since we’re just building the bones of the system right
now, but we’ll add our first route on page ? when we go to load the home
page shown before on page 8.

That’s the main structure of an Express application, and we won’t have to
touch this file for the rest of the project. We will add middlewares as we con-
tinue though, so that’s where we turn next.

• Click HERE to purchase this book now. discuss

Building the Bones • 9

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

Mounting Middleware
Here is the start of our middleware:

first-pass/src/app/express/mount-middleware.js
const express = require('express')Line 1

const { join } = require('path')-

-

const attachLocals = require('./attach-locals')-

const lastResortErrorHandler = require('./last-resort-error-handler')5

const primeRequestContext = require('./prime-request-context')-

function mountMiddleware (app, env) {-

app.use(lastResortErrorHandler)-

app.use(primeRequestContext)-

app.use(attachLocals)10

app.use(-

express.static(join(__dirname, '..', 'public'), { maxAge: 86400000 }))-

}-

-

module.exports = mountMiddleware15

Middlewares in Express are functions that we run as part of the request/response
cycle and that for the most part aren’t meant to actually handle the request.
We require three of our own, starting at line 4. Then we define the dependency-
receiving function mountMiddleware that is also exported at the very end of the
file. It receives app, the Express application, and env, our environment variables.
We won’t use the environment variables until Chapter 8, Authenticating Users,
on page ?.

To actually mount a middleware, we call app.use, passing in the middleware
function in question. We mount the first middleware, lastResortErrorHandler, at
line 8. We follow this with primeRequestContext and attachLocals, ending the function
with Express’s built-in middleware. express.static serves static files. We use that
for the CSS and JavaScript files we serve for the browser UI.

Let’s write those custom middlewares we just included, starting with prime
RequestContext:

first-pass/src/app/express/prime-request-context.js
const uuid = require('uuid/v4')

function primeRequestContext (req, res, next) {
req.context = {

traceId: uuid()
}

next()
}

module.exports = primeRequestContext

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/mount-middleware.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/prime-request-context.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

This middleware’s job is to set up values that we’ll want on every request. For
now we use it to generate a traceId for each and every request. Even in Model-
View-Controller (MVC) apps that model state as Create-Read-Update-Delete
(CRUD) operations, having a traceId is a nice thing. We’ll attach it to log state-
ments so that we know which log statements belong together. We put these
values onto req.context to namespace them all to a single property on req. We
don’t want to pollute the req object that Express hands us with a multitude
of keys.

Next is attachLocals:

first-pass/src/app/express/attach-locals.js
function attachLocals (req, res, next) {

res.locals.context = req.context
next()

}

module.exports = attachLocals

We’re rendering all of our UI on the server. This middleware makes the context
we set up on the request available when rendering our UI.

Finally, there’s lastResortErrorHandler:

first-pass/src/app/express/last-resort-error-handler.js
function lastResortErrorHandler (err, req, res, next) {

const traceId = req.context ? req.context.traceId : 'none'
console.error(traceId, err)

res.status(500).send('error')
}

module.exports = lastResortErrorHandler

This is an error-handling middleware, identified by having four parameters
in its signature. When nothing else manages to catch an error during a
request, we at least catch it here and log it. We will be more sophisticated
than this in our error handling—this is just our last resort.

With the middleware in place, we can dive into config and env.

Injecting Dependencies
We use a technique called dependency injection2 in this system. Quickly
stated, you can sum up dependency injection as “passing functions the things
they need to do their job.” This is in contrast to “having functions reach into
the global namespace to get what they need to do their job.” Dependency

2. https://www.youtube.com/watch?v=Z6vf6zC2DYQ

• Click HERE to purchase this book now. discuss

Injecting Dependencies • 11

http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/attach-locals.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/app/express/last-resort-error-handler.js
https://www.youtube.com/watch?v=Z6vf6zC2DYQ
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

injection doesn’t have anything to do with microservices, but it is how the
code in this book is structured.

So, enter code/first-pass/src/config.js, and let’s set up its shell:

first-pass/src/config.js
function createConfig ({ env }) {

return {
env,

}
}

module.exports = createConfig

That sure doesn’t do much yet. We’ll flesh it out on page ? once we’ve finished
with the home page application.

Next, let’s write the file that ingests the runtime environment variables we’ll use:

first-pass/src/env.js
module.exports = {

appName: requireFromEnv('APP_NAME'),
env: requireFromEnv('NODE_ENV'),
port: parseInt(requireFromEnv('PORT'), 10),
version: packageJson.version

}

This isn’t the entire file, so check out the rest of it when you can. requireFromEnv
is defined in the part that isn’t printed here, and it checks if the given envi-
ronment variable is present. If not, it exits the program and tells us why.
When critical settings aren’t present, we want to know about that ASAP.

What we’ve done here is locate every place where we read from the runtime
environment in this one file. We don’t have to wonder where we get environ-
ment settings from, and things that depend on environment settings don’t
realize that they do. This also isn’t microservices-specific and is just the
convention we use in this project.

We start with a few values. appName is a cosmetic name given to our running
system. env tells if we’re running in development, test, production, or whatever
other environment we care to run. port is the port our HTTP server will listen
on. version doesn’t strictly originate from the environment, as we pull it out of
the package.json file this project has (every Node.js project has a package.json).

Okay, with a barebones server built, let’s start this puppy:

first-pass/src/index.js
const createExpressApp = require('./app/express')❶
const createConfig = require('./config')
const env = require('./env')

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/egmicro/code/first-pass/src/config.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/env.js
http://media.pragprog.com/titles/egmicro/code/first-pass/src/index.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

const config = createConfig({ env })❷
const app = createExpressApp({ config, env })

function start () {❸
app.listen(env.port, signalAppStart)

}

function signalAppStart () {
console.log(`${env.appName} started`)
console.table([['Port', env.port], ['Environment', env.env]])

}

module.exports = {
app,
config,
start

}

❶ Starting here we require the functions for building our Express app and
config, as well as pulling in the environment.

❷ Then we instantiate config and the Express app.

❸ Finally, we define the start function that will be called to start the system.
For now it calls the Express app’s start function, passing it the port we
want the HTTP server to listen on (env.port) and a callback function (signalApp-
Start). This latter gets called when the HTTP server is listening, and it logs
some of the settings from the environment. It’s nice to have confirmation
the server is running.

Lastly, we just need some code that calls this start function:

first-pass/src/bin/start-server.js
const { start } = require('../')

start()

It simply requires the file located at code/first-pass/src/index.js, the one we just wrote.
It pulls out the start function and calls it.

Earlier we mentioned that every Node.js project has a package.json file at its
root, and ours is no exception. A package.json file defines a key named "scripts",
which are commands you can run using the npm command-line tool. If you
have one called "start-dev-server", you can run it with npm run start-dev-server. Ours
does define a script named "start-dev-server":

{
"scripts": {

"start-dev-server": "nodemon src/bin/start-server.js --color",
}

}

• Click HERE to purchase this book now. discuss

Injecting Dependencies • 13

http://media.pragprog.com/titles/egmicro/code/first-pass/src/bin/start-server.js
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

nodemon3 is a library that watches for changes to code files and then reruns
the command passed to it. We tell it to run the file at src/bin/start-server.js, so
every time that we make a change to the source code, it will restart the server
for us.

Taking the Server for a Spin and Starting the Database
If you look in the package.json file, you’ll also see that it defines dependencies and
devDependencies. The former are other packages of Node code that we rely on
in all situations, whereas the latter lists packages we use only in development.
Both are installed when you run npm install, so do that now.

At this point, you can actually run this server. To do so, you’ll need to have
your PostgreSQL database set up. If you’re comfortable doing that on your
own, then by all means do so.

However, you can also use Docker,4 which is what the rest of this book will
assume. To use Docker, you’ll need to install it, and we punt to the Docker
docs5 to explain how to do that for your platform. Then, in each code folder
there is a docker-compose.yaml, which contains the necessary Docker configuration
to run the databases for that folder. You can start the databases by running
docker-compose rm -sf && docker-compose up. Go ahead and do that now.

If you do use your own PostgreSQL installation, you’ll need to make the
DATABASE_URL value match your database’s setup in .env in the project’s root
directory.

Assuming that you have your database running, from the command line in
the project’s root folder, simply run npm run start-dev-server, and you should get
output similar to the following:

$ npm run start-dev-server

> microservices-book@1.0.0 start first-pass
> nodemon src/bin/start-server.js --color

[nodemon] 1.17.5
[nodemon] to restart at any time, enter `rs`
[nodemon] watching: *.*
[nodemon] starting `node src/bin/start-server.js --color`
Video Tutorials started

3. https://nodemon.io/
4. https://www.docker.com/
5. https://docs.docker.com/v17.09/engine/installation/

• 14

• Click HERE to purchase this book now. discuss

https://nodemon.io/
https://www.docker.com/
https://docs.docker.com/v17.09/engine/installation/
http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

┌─────────┬───────────────┬───────────────┐
│ (index) │ 0 │ 1 │
├─────────┼───────────────┼───────────────┤
│ 0 │ 'Port' │ 3000 │
│ 1 │ 'Environment' │ 'development' │
└─────────┴───────────────┴───────────────┘

Congratulations! You have an Express server running. Sure, it responds to
exactly zero routes, but no one said you were done. Just that, you can start
the system, and that’s a milestone worth celebrating. Now we can get that
incredible home page delivered to our users.

• Click HERE to purchase this book now. discuss

Taking the Server for a Spin and Starting the Database • 15

http://pragprog.com/titles/egmicro
http://forums.pragprog.com/forums/egmicro

