
Extracted from:

Explore It!
Reduce Risk and Increase Confidence

with Exploratory Testing

This PDF file contains pages extracted from Explore It!, published by the Pragmatic
Bookshelf. For more information or to purchase a paperback or PDF copy, please

visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jackie Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-02-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2013

http://pragprog.com

2.3 Good Charters

A good charter offers direction without overspecifying test actions. As an
example, the following isn’t a charter; it’s a test case.

When charters are too specific, they become just a different (and weird) way
of expressing individual tests. We end up spending a lot of time on test docu-
mentation with very little benefit.

On the flip side, charters that are too broad run the risk of not providing
enough focus. You won’t know how to tell when you’re done exploring if the
target is too big.

For example, consider this charter:

It’s so vague that you would never finish the mission. It calls for exploring
the entire system with a large and undefined set of resources. You could
spend weeks investigating it and still not be sure you discovered all the
important risks and vulnerabilities.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ehxta
http://forums.pragprog.com/forums/ehxta

Rather than a single huge charter, it is better to craft multiple charters, where
each focuses on a single area and/or a specific type of security hole:

A good charter is a prompt: it suggests sources of inspiration without dictating
precise actions or outcomes.

2.4 Generating Charters

Your explorations yield information, but unless your stakeholders value that
information and use it to move the project forward, you’re wasting your time.
To ensure the information you find has value, you need to work closely with
your stakeholders to identify and frame charters targeted at answering the
most valuable questions about the software.

This section examines some of the sources that inspire your charters.

Requirements

Requirements discussions are an ideal time to start drafting charters. Let’s
see how this works by eavesdropping on a conversation between Alex, a tester;
Pat, a programmer; and Binh, a business analyst. They’re discussing the
feature that allows users to update their profile information.

PAT: So, which of the profile fields should be modifiable?

BINH: All of them.

ALEX: Even the username? So someone with the username “fred728” can change
his username to “iamfred” and then use the new username to log in?

BINH: Yup!

ALEX: Wow. I’m concerned about the possibility of violating the restrictions around
usernames if we allow users to change their usernames after the fact.

PAT:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ehxta
http://forums.pragprog.com/forums/ehxta

That won’t be a problem. We’ve isolated all the username constraint logic to a single
place in the code base. It will behave exactly the same as if a user is creating an
account.

ALEX: That sounds like something I should explore.

Pat is asserting that there won’t be any problems, but Alex has seen plenty
of cases where the programmer was surprised by the software’s behavior. He
knows better than to assume Pat has the whole code base memorized. Alex
makes a note:

The conversation continues. Alex and Pat have questions about the interac-
tions between this feature and other capabilities that have already been
implemented:

PAT: Should users be able to update their profiles if their accounts are suspended?

BINH: Oooh. Good question. I’ll have to think about that.

ALEX: I bet there will be interactions between updating profiles and account
states. I’d better explore around that.

Aha! Binh might come back with a simple yes or no answer to this specific
question, but there is a deeper issue at play here. The first clue is that Binh
says, “I’ll have to think about that.” The second clue is that there is a potential
for an interaction between the new feature and existing capabilities.

Any time a question reveals uncertainty, ambiguity, or dependencies, there’s
something important to be explored during development. So Alex captures a
charter:

• Click HERE to purchase this book now. discuss

Generating Charters • 7

http://pragprog.com/titles/ehxta
http://forums.pragprog.com/forums/ehxta

As the discussion continues, Alex hits on an idea that wasn’t on Binh’s radar:

ALEX: Users see their profile information on their account page and also on the
dashboard. So far we’re talking about editing their profiles from the account page.
Should we also allow users to update their account information from the dashboard?

BINH: I think that’s out of scope for now, but it’s something we should consider
in the next update. I’ll add it to my list.

Exploring can reveal opportunities to add new requirements as well as find
risks or problems. When you begin questioning and exploring, you can watch
for such opportunities, then review your suggestions with your stakeholders.

Implicit Expectations

In this example, Pat and Alex are asking Binh about his expectations. However,
no matter how much Pat and Alex probe, Binh will still have additional
expectations that he doesn’t even think about expressing. Binh might think
that a given expectation is too obvious to mention. Here’s what one product
manager said to me when I asked about the interaction between a new feature
and the existing security features: “We have a security model in this system.
New features have to honor that security model. I just expect you guys to
take that into account without my saying it for every single feature.”

Another example of implicit expectations might include crosscutting quality
criteria such as reliability, scalability, or performance. If the functionality
works as specified but the response time increases from under a second to
over a minute, there’s a problem, even if the response time wasn’t explicitly
stated as part of the requirement.

Whenever you recognize an implicit expectation that deserves exploration,
capture it as a charter.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ehxta
http://forums.pragprog.com/forums/ehxta

Charters Align Goals

The requirements discussion is an ideal time to get feedback on the extent
to which your ideas about the most important risks match the rest of your
stakeholders’ concerns. As you think of possible charters, you can ask your
stakeholders if they would value the information those charters might reveal.
Pat, Alex, and Binh might consider questions like these:

• “Should we look for possible performance implications?”

• “If there were problems with legacy data, would we want to know?”

• “If we could find a way that users could put their accounts into an
unusable state, no matter how crazy, we’d fix it, right?”

Asking these questions is important because you don’t want to spend a lot
of time discovering information that no one will ever take action on. It’s a
waste of time. For example, Binh might say, “If users do something really
crazy to their accounts, the Help Desk can get them sorted out. Update Profile
should use the same validations as Create Account, but nothing beyond that.”
This would imply that it’s worth exploring updating the username, but it isn’t
worth spending days exploring conditions that go beyond the basic validation
that Pat says is already built in.

Of course, you might disagree with your stakeholders about risk. The best
time to surface that disagreement is during a discussion like this, before you
have spent hours exploring. Perhaps you see a particular kind of risk that
the rest of your stakeholders don’t see. Discussing the risk in advance can
either allay your concerns or raise your stakeholders’ awareness.

Stakeholder Questions

Questions surface throughout the development cycle. Indeed, sometimes the
very best questions come up when mulling the implications of a given design
decision or when mapping out a connected set of features. For example, if
you were working on software that had both privacy settings and a messaging
feature, your stakeholders might become concerned about their interaction:

How do the existing privacy settings interact with our new messaging feature?

Your stakeholders might wonder what will happen in the future:

What will happen if we add ten times the number of items to the catalog?

Your stakeholders might become worried about possible risks:

Could a hacker hijack the email notification system to send spam?

Are there any circumstances under which a customer could be double-billed?

• Click HERE to purchase this book now. discuss

Generating Charters • 9

http://pragprog.com/titles/ehxta
http://forums.pragprog.com/forums/ehxta

These questions can form the basis for charters like these:

Existing Artifacts

The source code can even yield interesting charter ideas, particularly if you
happen across a code comment like this one:

// I don't know why this works, but it does. Don't touch it.

Other existing artifacts associated with the software can yield chartering
ideas. The bug database is likely to offer up a wealth of insight about historic
areas of risk. Scanning the logs from support calls can give you insight into
the risks that have historically bitten customers.

New Realizations and Discoveries

Chartering is an ongoing process. You start chartering as soon as anyone
starts discussing requirements, and you continue identifying charters
throughout development. As you explore, it’s also normal for you to realize
that the charters you have mapped out only barely scratched the surface.

You can tell this is happening when you start executing sessions against a
charter only to discover that you’re continually tempted to explore in directions

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ehxta
http://forums.pragprog.com/forums/ehxta

that are decidedly off-charter and you’re afraid to ignore these temptations
for fear that you won’t remember to come back.

Such temptations are a cue that you need to jot down additional charters to
pursue in later sessions.

• Click HERE to purchase this book now. discuss

Generating Charters • 11

http://pragprog.com/titles/ehxta
http://forums.pragprog.com/forums/ehxta

