Elixir 1.6 Exercises

Chapter 2: Pattern Matching

Exercise: Pattern Matching-1 (Page 18)

e Which of the following would match?
o a=1[1, 2, 3]
o a=4
o 4=a
o [a,b]l=[1,2,3]
oca=[[12,3]]
o [a..5]1=[1..5]
o [al=[[1,2,3]]
o [[all=0[11,2,3]]

A Possible Solution</summary>

[1,2,3] #=>a—[1,2, 3]
4 =>a —4
a # assuming prior assignment

a
a
4

[a,b]=11,2,3]
** (MatchError) no match of right hand side value: [1, 2, 3]
:erl_eval.expr/3

a=[[1,2,3]] #=>a—]1,2 3]|
[a..5]=[1..5] #=>a —1
lal =[[1,2,3]]#=>a —[1,2,3]

lall =1[[1,2,31]

** (MatchError) no match of right hand side value: [[1, 2, 3]]
erl_eval.expr/3

</details>

Exercise: Pattern Matching-2 (Page 19)

e Which of the following will match?
o [a,b,al=[1,2 3]
o [a,b,al=[1,1,2]
o [a,b,al=[1,2,1]

A Possible Solution</summary>

[a,b,a]=11,2,3]
** (MatchError) no match of right hand side value: [1, 2, 3]

[a,b,a]l=[1,1,2]
** (MatchError) no match of right hand side value: [1, 1, 2]
[a,b,a]l=[1,2,1] #=>a—1,b —2

[a,b,a]l=[1,1,1] #=>a—>1,b =1

</details>

Exercise: Pattern Matching-3 (Page 20)

e If you assume the variable a initially contains the value 2, which of the
following will match?
o [a,b,al=[1,2 3]
o [a,b,al=[11,2]

o a=1

o Na=2
o Ma=1
o "a=2-a

A Possible Solution</summary>

a=2 #=>a —>2
[a,b,a]l=[1,2,3]

** (MatchError) no match of right hand side value: [1, 2, 3]
:erl_eval.expr/3

[a'b'a]=[1'1'2]
** (MatchError) no match of right hand side value: [1, 1, 2]
erl_eval.expr/3

a=1 =>a—1

"a=2

** (MatchError) no match of right hand side value: 2
:erl_eval.expr/3

Na=1 #=> matches. a still 1

Aa=2-a #=>matches. astill 1

</details>

Chapter 5: Anonymous Functions

Exercise: Functions-1 (Page 43)

e Go into iex. Create and run the functions that do the following
o list_concat.([1,2,3], [4,5,6]) #=> [1,2,3,4,5,6]
o sum.(1, 2, 3) #=> 6
o pair_tuple_to_list.({8,7 }) #=>[8,7]

A Possible Solution</summary>

iex(1)> list_concat =fna, b -> a ++ b end
#Function<erl_eval.12.17052888>
iex(2)> list_concat.([1,2,3], [4,5,6])
[1,2,3,4,5,6]

iex(3)>sum =fna,b,c->a+b+cend
#Function<erl_eval.18.17052888>
iex(4)> sum.(1,2,3)

6

iex(5)> pair_tuple_to_list = fn {a, b} ->[a, b] end
#Function<erl_eval.6.17052888>

iex(6)> pair_tuple_to_list.({ 8,7 })

(8,71

</details>
Exercise: Functions-2 (Page 45)

e Write a function that takes three arguments. If the first two are zero, return
“FizzBuzz". If the first is zero, return “Fizz". If the second is zero return “Buzz”.
Otherwise return the third argument. Do not use any language features that we

haven't yet covered in this book.

A Possible Solution</summary>

iex(1)> fizz_word = fn
...(1)> 0,0, _->"FizzBuzz"

..(1)> 0,_, _->"Fizz"
...(1)> _,0,_->"Buzz"
«(1)> _,_,n->n
...(1)> end

#Function<erl_eval.18.17052888>

iex(2)> fizz_word.(0, 0, 1)
"FizzBuzz"

iex(3)> fizz_word.(0, 1, 1)
"Fizz"

iex(4)> fizz_word.(1, 0, 1)
IIBuzzII

iex(5)> fizz_word.(1, 1, 1)
1

</details>

Exercise: Functions-3 (Page 45)

e The operator rem(a, b) returns the remainder after dividing a by b. Write a
function that takes a single integer (n) calls the function in the previous
exercise, passing it rem(n,3), rem(n,5), and n. Call it 7 times with the
arguments 10, 11, 12, etc. You should get “Buzz, 11, Fizz, 13, 14, FizzBuzz",
16".

e (Yes, it's a FizzBuzz' solution with no conditional logic).

A Possible Solution</summary>

iex(3)>fb=fnn ->

...(3)> fizz_word.(rem(n, 3), rem(n, 5), n)
...(3)> end
#Function<erl_eval.6.17052888>

iex(4)> [fb.(10), fb.(11), fb.(12), fb.(13), fb.(14), fb.(15), fb.(16)]
['Buzz", 11, "Fizz", 13, 14, "FizzBuzz", 16]

</details>
1. http://c2.com/cgi/wiki?FizzBuzzTest

2. <

Exercise: Functions-4 (Page 47)

e Write a function prefix that takes a string. It should return a new function that
takes a second string. When that second function is called, it will return a string
containing the first string, a space, and the second string.

® iex> mrs = prefix.("Mrs")

#Function<erl_eval.6.82930912>
iex> mrs.("Smith")

"Mrs Smith"

iex> prefix.("Elixir").("Rocks")

"Elixir Rocks"

A Possible Solution</summary>

iex> prefix = fn prefix -> fn str -> "#{prefix} #{str}" end end
#Function<erl_eval.6.17052888>

iex> mrs = prefix.("Mrs")
#Function<erl_eval.6.17052888>

iex> mrs.("Smith")
"Mrs Smith"

iex> prefix.("Elixir").("Rocks")
"Elixir Rocks"

</details>

Exercise: Functions-5 (Page 50)
e Use the &1,... notation to rewrite the following.

o Enum.map [1,2,3,4], fn X -> x + 2 end
o Enum.each [1,2,3,4], fn x -> I0.puts x end

A Possible Solution</summary>

iex(1)> Enum.map [1,2,3,4], &1 + 2
[3,4,5, 6]

iex(2)> Enum.each [1,2,3,4], 10.puts(&1)
1

2

3

4

:ok

</details>

Chapter 6: Modules and Named Functions

Exercise: Modules and Functions-1 (Page 55)

e Extend the Times module with a triple function, that multiplies its parameter

by three.

A Possible Solution</summary>

defmodule Times do
def double(n), do: n * 2
def triple(n), do: n * 3
end

</details>

Exercise: Modules and Functions-2 (Page 55)

e Run the result in iex. Use both techniques to compile the file.

A Possible Solution</summary>

Load our module into iex as it starts
#

$ iex times.exs

iex(1)> Times.triple 4

12

iex(2)>

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (/)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

rC

Load it in after it starts
#

Siex

iex(1)> c "times.exs"
[Times]

iex(2)> Times.triple 7
21

iex(3)>

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (/)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

rC

</details>

Exercise: Modules and Functions-3 (Page 55)

e Add a quadruple function. (Maybe it could call the double function....)

defmodule Times do

def double(n), do:n*2

def triple(n), do:n*3

def quadruple(n), do: double(double(n))
end

10.puts Times.quadruple(6) #=>24
Exercise: Modules and Functions-4 (Page 57)

e Implement and run a function sum(n) that uses recursion to calculate the sum
of the integers from 1 to n. You'll need to write this function inside a module in a

separate file. Then load up iex, compile that file, and try your function.

A Possible Solution</summary>

defmodule Recursive do

def sum(0), do: 0

def sum(n), do: n + sum(n-1)
end

$ iex recursive.exs
iex(1)> Recursive.sum(4)
10

iex(2)> Recursive.sum(5)
15

</details>

Exercise: Modules and Functions-5 (Page 57)

e Write a function gcd(Xx,y) that finds the greatest common divisor between two
nonnegative integers. Algebraically, gcd(x,y) is x if y is zero, gcd(y,

rem(x,y))otherwise.

A Possible Solution</summary>
defmodule MyMath do

def ged(x, 0), do: x
def ged(x, y), do: gcd(y, rem(x, y))

end

10.puts MyMath.gcd(20, 15) #=>5
10.puts MyMath.gcd(20, 16) #=>4
10.puts MyMath.gcd(23, 17) #=>1

</details>

Exercise: Modules and Functions-6 (Page 62)

e I'm thinking of a number between 1 and 1000...

e The most efficient way to find the number is to guess halfway between the low
and high numbers of the range. If our guess is too big, then the answer lies
between the bottom of the range and one less than our guess. If it is too small,
then the answer lies between one more than our guess and the end of the range.

e Code this up. Your APl will be guess(actual, range), where range is an
Elixir range.

e Your output should look similar to:

® iex> Chop.guess(273, 1..1000)

Is it 500

Is it 250
Is it 375
Isit 312
Is it 281
Is it 265
Is it 273
273

e Hints:
o You may need to implement helper functions with an additional
parameter (the currently guessed number).
o the div(a,b) function performs integer division
o guard clauses are your friends
o patterns can match the low and high parts of a range (a..b=4..8) ===
{::comment} defmodule Chop do def guess(actual, range = low..high) do
guess = div(low+high, 2) 10.puts “Is it #{guess}” guess(actual, guess,
range) end
e def guess(actual, actual, _), do: actual def guess(actual, guess, _low..high) when
guess < actual, do: guess(actual, guess+1..high) def guess(actual, guess,
low.._high) when guess > actual, do: guess(actual, low..guess-1) end
{:/comment}

</yourturn>

A Possible Solution</summary>

defmodule Chop do
def guess(actual, range = low..high) do
guess = div(low+high, 2)
10.puts "Is it #{guess}?"
_guess(actual, guess, range)
end

defp _guess(actual, actual, _),
do: 10.puts "Yes, it's #{actual}"

defp _guess(actual, guess, _low..high)

when guess < actual,
do: guess(actual, guess+1..high)

defp _guess(actual, guess, low.._high)
when guess > actual,
do: guess(actual, low..guess-1)

end

Chop.guess(273, 1..1000)

</details>

Exercise: Modules and Functions-7 (Page 70)

e Find the library functions to do the following, and then use each in iex. (If

there's the word Elixir or Erlang at the end of the challenge, then you'll find the

answer in that set of libraries.)

o

o

o

Convert a float to a string with 2 decimal digits. (Erlang)

Get the value of an operating system environment variable. (Elixir)
Return the extension component of a file name (so return .exs if given
"dave/test.exs" (Elixir)

Return the current working directory of the process. (Elixir)

Convert a string containing JSON into Elixir data structures. (Just find,
don't install)

Execute an command in your operating system'’s shell

A Possible Solution</summary>

Convert a float to a string with 2 decimal digits.
iex> :io.format("~.2f~n", [2.0/3.0])

0.67
ok

Get the value of an operating system environment variable.
iex> System.get_env("HOME")
"/Users/dave"

Return the extension component of a file name

iex> Path.extname("dave/test.exs")

.exs

Return the current working directory of the process

iex> System.cwd
"/Users/dave/BS2/titles/elixir/Book/yourturn/ModulesAndFunctions”

Convert a string containing JSON into Elixir data structures

There are many options. Some, such as https://github.com/guedes/exjson,
are specifically for Elixir. Others, such as https://github.com/hio/erlang-json
are Elnag libraries that are usable from Elixir.

Execute an command in your operating system's shell

iex> System.cmd("date")
"Sun Jul 14 15:04:06 CDT 2013\n"

</details>

Chapter 7: Lists and Recursion

Exercise: Lists and Recursion-1 (Page 77)

e Write a function mapsum that takes a list and a function. It applies the
function to each element of the list, and then sums the result, so

® iex> MylList.mapsum [1, 2, 3], &1 * &1
14

A Possible Solution</summary>
defmodule MyList do

def mapsum([], _fun), do: 0
def mapsum([head | tail], fun), do: fun.(head) + mapsum(tail, fun)

end

10.puts MyList.mapsum([1, 2, 3], &1 * &1) #=> 14

</details>

Exercise: Lists and Recursion-2 (Page 77)

o Write max(list) that returns the element with the maximum value in the list.

(This is slightly trickier than it sounds.)

A Possible Solution</summary>
Our solution uses the built-in max/2 function, which
returns the larger of its two numeric arguments.
Although it isn't necessary, we call it as
'Kernel.max’ to avoid confusion
defmodule MyList do
max([]) is undefined...

max of a single element list is that element
def max([x]), do: x

else recurse
def max([head | tail]), do: Kernel.max(head, max(tail))

end
10.puts MyList.max([4]) #=>4
10.puts MyList.max([5, 4, 3]) #=> 5
(
(

10.puts MyList.max([4, 5, 3]) #=> 5
10.puts MyList.max([3, 4, 5]) #=> 5

</details>

Exercise: Lists and Recursion-3 (Page 78)

e An Elixir single quoted string is actually a list of individual character codes.
Write a function caesar(list, n) that adds n to each element of the list, but

wrapping if the addition results in a character greater than z.

® iex> MylList.caesar('ryvkve', 13)

A Possible Solution</summary>
defmodule MyList do
def caesar([], _n), do: [|
def caesar([head | tail], n)
when head+n <= 7z,

do: [head+n | caesar(tail, n) |

def caesar([head | tail], n),
do: [head+n-26 | caesar(tail, n)]

end

10.puts MyList.caesar(‘ryvkve’, 13) #=> elixir

</details>

Exercise: Lists and Recursion-4 (Page 81)

e Write a function MyList.span(from, to) that returns a list of the numbers from

from up to to.

A Possible Solution</summary>
defmodule MyList do
def span(from, to) when from > to, do: [|
def span(from, to) do
[from | span(from+1, to) |
end

end

10.inspect MyList.span(5, 10)

</details>

Chapter 10: Processing Collections-Enum and Stream

Exercise: Lists and Recursion-5 (Page 102)

e Implement the following Enum functions using no library functions or list

comprehensions: all?, each, filter, split, and take

A Possible Solution</summary>
defmodule MyList do

def all?(list), do: all?(list, fn x -> !!x end) # !! converts truthy to ‘true’
def all?([l, _fun), do: true
def all?([head | tail], fun) do
if fun.(head) do
all?(tail, fun)
else
false
end
end

def each([], _fun), do: []

def each([head | tail], fun) do
[fun.(head) | each(tail, fun)]

end

def filter([], _fun), do: []
def filter([head | tail |, fun) do
if fun.(head) do
[head, filter(tail, fun)]
else
[filter(tail, fun)]
end
end

def split(list, count), do: _split(list, [l, count)
defp _split([], front, _), do: [Enum.reverse(front), [1]
defp _split(tail, front, 0), do: [Enum.reverse(front), tail |
defp _split([head | tail], front, count) do

_split(tail, [head|front], count-1)
end

def take(list, n), do: hd(split(list, n))

end

10.inspect MyList.all?([]) #=> true
10.inspect MyList.all?([true, true]) => true
10.inspect MyList.all?([true, false]) #=> false
10.inspect MyList.all?([4, 5, 6], &1 > 3) #=> true

MyList.each([1,2,3], 10.puts(&1)) =>1/2/3
10.inspect MyList.split([1,2,3,4,5,6], 3) #=>[[1, 2, 3], [4, 5, 6]]

10.inspect MyList.take(‘pragmatic’, 6) #=> pragma’

</details>

Exercise: Lists and Recursion-6 (Page 102)

e (Harder) Write a function flatten(list) that takes a list that may contain any
number of sublists, and those sublists may contain sublists, to any depth. It
returns the elements of these lists as a flat list.

® iex> Mylist.flatten([1, [2, 3, [4]], 5, [[[6]1]11])
[1,2,3,4,5,6]

e Hint: You may have to use Enum.reverse to get your result in the correct

order.

A Possible Solution</summary>

The simplest version is probably to use list concatenation. However,
this version ends up rebuilding the list at each step
defmodule UsingConcat do
def flatten([]), do: [|
def flatten([head | tail]), do: flatten(head) ++ flatten(tail)
def flatten(head), do: [head]
end

This version is more efficient, as it picks successive head values
from a list, adding them to ‘result’. It is also tail recursive.

The trick is that we have to unnest the head if the head itself is a
list.

defmodule MyList do
def flatten(list), do: _flatten(list, [])
defp _flatten([], result), do: Enum.reverse(result)

The following two function heads deal with the head
being a list
defp _flatten([[h | [] | tail], result) do
_flatten([h | tail], result)
end

defp _flatten([[h | t] | tail], result) do
_flatten([h, t | tail], result)
end

Otherwise the head is not, and we can collect it

defp _flatten([head | tail], result) do
_flatten(tail, [head | result])

end

end
10.inspect MyList.flatten([1, [2, 3, [4]], 5, [[[6]]]])

José Valim came up with a different implementation. It is interesting
to spend some time with this, because it breaks down the problem

a little differently. Rather that extract individual elements

to built the result list, it treats the original list more like

a tree, flattening subtrees on the right and merging the results

into a tree that itself gets flattened. It is tider, and | prefer

it to my solution.

defmodule JVList do
def flatten(list), do: do_flatten(list, [])

def do_flatten([h|t], tail) when is_list(h) do
do_flatten(h, do_flatten(t, tail))
end

def do_flatten([h|t], tail) do
[h|do_flatten(t, tail)]
end

def do_flatten([], tail) do
tail
end
end

</details>

Exercise: Lists and Recursion-7 (Page 114)

e Use your span function and list comprehensions to return a list of the prime

numbers from 2 to n.

A Possible Solution</summary>
defmodule MyList do
def span(from, to) when from > to, do: [|
def span(from, to), do: [from | span(from+1, to) |
def primes_up_to(n) do
range = span(2, n)
range -- (Ic a inlist range, b inlist range, a <= b, a*b <= n, do: a*b)
end

end

10.inspect MyList.primes_up_to(40) #=>[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

</details>

Exercise: Lists and Recursion-8 (114)

Pragmatic Bookshelf has offices in Texas (TX) and North Carolina (NC), so we
have to charge sales tax on orders shipped to these states. The rates can be
expressed as a keyword list’

e tax_rates = [NC: 0.075, TX: 0.08]

e Here’s a list of orders:

® orders =[

[id: 123, ship_to: :NC, net_amount: 100.00],

[id: 124, ship_to: :0OK, net_amount: 35.50],
[id: 125, ship_to: :TX, net_amount: 24.00],
[id: 126, ship_to: :TX, net_amount: 44.80],
[id: 127, ship_to: :NC, net_amount: 25.00],
[id: 128, ship_to: :MA, net_amount: 10.00],
[id: 129, ship_to: :CA, net_amount: 102.00],
[id: 120, ship_to: :NC, net_amount: 50.00]]

e Write a function that takes both lists and returns a copy of the orders, but with
an extra field, total_amount which is the net plus sales tax. If a shipment is

not to NC or TX, there’s no tax applied.

A Possible Solution</summary>
defmodule Tax do

def orders_with_total(orders, tax_rates) do
orders |> Enum.map(add_total_to(&1, tax_rates))
end

def add_total_to(order = [id: _, ship_to: state, net_amount: net], tax_rates) do
tax_rate = Keyword.get(tax_rates, state, 0)
tax = net*tax_rate
total = net+tax
Keyword.put(order, :total_amount, total)
end

end

tax_rates = [NC: 0.075, TX: 0.08]

orders = [
[id: 123, ship_to: :NC, net_amount: 100.00],
[id: 124, ship_to: :0K, net_amount: 35.50],
[id: 125, ship_to: :TX, net_amount: 24.00],
[id: 126, ship_to: :TX, net_amount: 44.80],
[id: 127, ship_to: :NC, net_amount: 25.00],
[id: 128, ship_to: :MA, net_amount: 10.00],
[id: 129, ship_to: :CA, net_amount: 102.00],
[id: 120, ship_to: :NC, net_amount: 50.00]

]

10.inspect Tax.orders_with_total(orders, tax_rates)

</details>
1. 1 wish it were that simple.... ¢

Chapter 11: Strings and Binaries

Exercise: Strings and Binaries-1 (Page 123)

e Write a function that returns true if a single-quoted string contains only

printable ASCII characters (space through tilde).

A Possible Solution</summary>

defmodule MyString do
def printable_ascii(sgs), do: Enum.all?(sqs, fn ch -> ch in 7 ..?~ end)
end
10.inspect MyString.printable_ascii(‘cat!’) #=> true
10.inspect MyString.printable_ascii('‘dx/dy’) #=> false
</details>

Exercise: Strings and Binaries-2 (Page 123)

e Write anagram?(word1, word?2) that returns true if its parameters are

anagrams.

A Possible Solution</summary>
defmodule MyString do

def anagram(sqs1, sqs2), do: Enum.sort(sqs1) == Enum.sort(sqs2)
end

10.inspect MyString.anagram('cat’, ‘act’) #=> true
10.inspect MyString.anagram('cat’, ‘actor’) #=> false

10.inspect MyString.anagram(‘incorporates’, ‘procreations’) #=> true

</details>

Exercise: Strings and Binaries-3 (Page 123)

e Try the following in iex:
® iex> ['cat' | 'dog']

['cat’,100,111,103]

e Why does iex print ‘cat’ as a string, but ‘dog’ as individual numbers?

A Possible Solution</summary>

Because the head of the new list is actually the list [?c, ?a, ?t].

This means the overall list consists of a list and three ASCII

characters:

#

['cat'|'dog'] =[[?c, ?a, ?t], 2d, ?0, ?g]

#

Because the overall list contains something other than ASCII

characters, it is displayed as a list of values. But the first value is
the list ‘cat’, which _is_ just ASCII characters.

</details>

Exercise: Strings and Binaries-4 (Page 123)

e (Harder) Write a function that takes a single-quoted string of the form number
[+-*/] number and returns the result of the calculation. The individual numbers
do not have leading plus or minus signs.

e calculate('123 + 27') # => 150

A Possible Solution</summary>

defmodule Parse do

def calculate(expression) do
{n1, rest } = parse_number(expression)

rest = skip_spaces(rest)
{ op, rest } = parse_operator(rest)
rest = skip_spaces(rest)
{n2,[]} =parse_number(rest)
op.(n1, n2)

end

defp parse_number(expression), do: _parse_number({ 0, expression })

defp _parse_number({value, [digit | rest] }) when digit in 20..?9 do
_parse_number({ value*10 + digit - 20, rest})
end

defp _parse_number(result), do: result

defp skip_spaces([? | rest), do: skip_spaces(rest)
defp skip_spaces(rest), do: rest

defp parse_operator(| 7+ | rest]), do: { &1+&2, rest }
defp parse_operator([?- | rest]), do: { &1-&2, rest }
defp parse_operator(| 7* | rest]), do: { &1*&2, rest }
defp parse_operator([?/ | rest]), do: { div(&1, &2), rest }

end
10.inspect Parse.calculate(23+45") #=>68
10.inspect Parse.calculate('34 - 56") #=>-22

10.inspect Parse.calculate('12 * 23") #=> 276
10.inspect Parse.calculate(123 / 8") #=>15

</details>

Exercise: Strings and Binaries-5 (Page 130)

e Write a function that takes a list of dgs and prints each on a separate line,
centered in a column which is the width of the longest. Make sure it works with

UTF characters.

® iex> center(["cat", "zebra", "elephant"])

cat
zebra

elephant

A Possible Solution</summary>
defmodule MyString do

def center(strings) do
strings
|> Enum.map_reduce(0, accumulate_max_length(&1, &2))
|> center_strings_in_field
|> Enum.each(10.puts(&1))
end

We jump through this hoop to avoid calculating the string length twice.
Here, we build a tuple containing the length and the string, and
nest it in a tuple containing the maximum length seen so far
defp accumulate_max_length(string, max_length_so_far) do
I = String.length(string)
{ {string, I}, max(/, max_length_so_far) }
end

defp center_strings_in_field({strings, field_width}) do
strings |> Enum.map(center_one_string(field_width, &1))
end
defp center_one_string(field_width, {string, length}) do
%b[#{String.duplicate(" ", div(field_width - length, 2))}#{string}]
end

end

MysString.center %w{ cat zebra elephant }

</details>

Exercise: Strings and Binaries-6 (Page 131)

e Write a function to capitalize the sentences in a string. Each sentence is
terminated by a period and a space. Right now, the case of the characters in the
string is random.

® iex> capitalize_sentences("oh. a DOG. woof. ")

"Oh. A dog. Woof. "

A Possible Solution</summary>
defmodule MyString do

def capitalize_sentences(string) do
string
|> String.split(%r{\.\s+})
|> Enum.map(String.capitalize(&1))
[> Enum.join(". ")

end

end

10.inspect MyString.capitalize_sentences("oh. a DOG. woof. ")

</details>

Exercise: Strings and Binaries-7 (Page 131-132)

e The Lists chapter had an exercise about calculating sales tax. We now have the
sales information in a file of comma-separated id, ship_to, and amount values.

The file looks like this:
e id,ship_to,net_amount

123,:NC,100.00
124,:0K,35.50
125,:TX,24.00
126,:TX,44.80
127,:NC,25.00
128,:MA,10.00
129,:CA,102.00

120,:NC,50.00

e Write a function that reads and parses this file, and then passes the result to the
sales tax function. Remember that the data should be formatted into a keyword
list, and that the fields need to be the correct types (so the id field is an integer,
and so on).

e You'll need the library functions File.open, I0.read(file, :line), and

IO.stream(file).

A Possible Solution</summary>

defmodule SimpleCSV do
def read(filename) do
file = File.open!(filename)
headers = read_headers(10.read(file, :line))
Enum.map(10.stream(file), create_one_row(headers, &1))
end

defp read_headers(hdr_line) do
from_csv_and_map(hdr_line, binary_to_atom(&1))
end

defp create_one_row(headers, row_csv) do
row = from_csv_and_map(row_csv, maybe_convert_numbers(&1))
Enum.zip(headers, row)

end

defp from_csv_and_map(row_csv, mapper) do
row_csv
|> String.strip
|> String.split(%r{,\s*})
|> Enum.map(mapper)
end

defp maybe_convert_numbers(value) do
cond do
Regex.match?(%r{*\d+$}, value) -> binary_to_integer(value)
Regex.match?(%r{*"\d+\.\d+$}, value) -> binary_to_float(value)
<< ?: :: utf8, name :: binary >> = value -> binary_to_atom(name)
true -> value
end
end
end

defmodule Tax do

def orders_with_total(orders, tax_rates) do
orders |> Enum.map(add_total_to(&1, tax_rates))
end
def add_total_to(order = [id: _, ship_to: state, net_amount: net], tax_rates) do
tax_rate = Keyword.get(tax_rates, state, 0)
tax = net*tax_rate
total = net+tax
Keyword.put(order, :total_amount, total)
end

end

tax_rates = [NC: 0.075, TX: 0.08]
orders = SimpleCSV.read("sales_data.csv")

10.inspect Tax.orders_with_total(orders, tax_rates)

</details>

Chapter 12: Control Flow

Exercise: Control Flow-1 (Page 140)

e Rewrite the FizzBuzz example using case.

A Possible Solution</summary>
defmodule FizzBuzz do

def upto(n) when n > 0 do
1..n |> Enum.map(fizzbuzz(&1))
end

defp fizzbuzz(n) do
case { rem(n, 3), rem(n, 5), n } do
{0, 0, _}->"FizzBuzz"
{0,_, _}->"Fizz"
{_,0,_}->"Buzz"

{_,n}->n
end
end
end

</details>

Exercise: Control Flow-2 (Page 140-141)

e We now have three different implementations of FizzBuzz. One uses cond, one
uses case, and one uses separate functions with guard clauses.

e Take a minute to look at all three. Which do you feel best expresses the
problem. Which will be easiest to maintain?

e The case style and the one using guard clauses are somewhat different to
control structures in most other Inaguages. If you feel that one of these was the
best implementation, can you think of ways of reminding yourself to investigate

these options as you write more Elixir code in the future?

Exercise: Control Flow-3 (Page 141)

e Many built-in functions have two forms. The xxx form returns the tuple {:0k,
data} and the xxx! form returns data on success but raises an exception
otherwise. However, there are some functions that don’t have the xxx! form.

e Write a function ok! takes an arbitary parameter. If the parameter is the tuple
{:0k, data} return the data. Otherwise raise an exception containing
information from the parameter.

e You could use your function like this:

o file = ok! File.open("somefile")

A Possible Solution</summary>

defmodule MustBe do

def ok!({:0k, data}), do: data
def ok!({error_type, error_msg}), do: raise("#{error_type}: #{error_msg}")

end

stream = MustBe.ok!(File.open("/etc/passwd"))
10.puts(10.stream(stream) |> Enum.take(5))

try do
MustBe.ok!(File.open("not-a-file"))
rescue x ->
10.puts "ERROR"

10.puts x.message
end

</details>

Chapter 13: Organizing a Project
Exercise: Organizing a Project-1 (Page 149)

e Do what | did. Honest. Create the project, and write and test the option parser.
It's one thing to read about it, but you'll be doing this a lot, so you may as well

start now.

Exercise: Organizing a Project-2 (Page 153)

e Add the dependency to your project and install it.

Exercise: Organizing a Project-3 (Page 160)

e Bring your version of this project in line with the code here.

Exercise: Organizing a Project-4 (Page 160)

e (Tricky) Before reading the next section, see if you can write the code to format

the data into columns, like the sample output at the start of the chapter. This is

probably the longest piece of Elixir code you'll have written. Try to do it without

using if or cond.

Exercise: Organizing a Project-6 (Page 168)

¢ Inthe US, NOAA provides hourly XML feeds' of conditions at 1,800 locations.
For example, the feed for a small airport close to where I'm writing this is at

http://w1.weather.gov/xml/current_obs/KDTO.xml

e Write an application that fetches this data, parses it, and displays it in a nice
format.

e (Hint: you might not have to download a library to handle XML parsing)

1. http://w1.weather.gov/xml/current_obs

2 <

Chapter 15: Working with Multiple Processes

Exercise: Working with Multiple Processes-1 (Page 206)

e Run this code on your machine. See if you get comparable results.

Exercise: Working with Multiple Processes-2 (Page 206)

e Write a program that spawns two processes, and then passes each a unique
token (for example “fred” and “betty”). Have them send the tokens back.
o Is the order that the replies are received deterministic in theory? In
practice?
o If either answer is no, how could you make it so?

Exercise: Working with Multiple Processes-3 (Page 210)

The Erlang function timer.sleep(time_in_ms) suspends the current process for
a given time. You might want to use it to force some scenarios in the following:

The key with these exercises is to get used to the different reports that you'll see when

you're developing code.
e Use spawn_link to start a process, and have that process send a message to

the parent and then exit immediately. Meanwhile, sleep for 500ms in the parent,
then receive as many messages as there are waiting. Trace what you receive.
Does it matter that you weren't waiting for the notification from the child at the

time it exited?

Exercise: Working with Multiple Processes-4 (Page 210)

e Do the same, but have the child raise an exception. What difference do you see

in the tracing.

Exercise: Working with Multiple Processes-5 (Page 210)

e Repeat the two, changing spawn_link to spawn_monitor.

Exercise: Working with Multiple Processes-6 (Page 211)

e Inthe pmap code, | assigned the value of self to the variable me at the top of
the method, and then used me as the target of the message returned by the

spawned processes. Why use a separate variable here?

Exercise: Working with Multiple Processes-7 (Page 211)

e Change the ~pid in pmap to _pid. This means that the receive block will take

responses in the order the processes send them. Now run the code again. Do

you see any difference in the output? If you're like me, you don't, but the
program clearly contains a bug. Are you scared by this? Can you find a way to
reveal the problem (perhaps by passing in a different function, or by sleeping, or
increasing the number of propcesses)? Change it back to ~ pid and make sure

the order is now correct.

Exercise: Working with Multiple Processes-8 (Page 215)

e Run the Fibonacci code on your machine. Do you get comparable timings. If
your machine has multiple cores and/or processors, do you see improvements

in the timing as we increase the concurrency of the application?

Exercise: Working with Multiple Processes-9 (Page 215)

e Use the same server code, but instead run a function that finds the number of
times the word “cat” appears in each file in a given directory. Run one server
process per file. The function File.ls! returns the names of files in a directory,
and File.read! reads the contents of a file as a binary.

e Run your code on a directory with a reasonable number of files (maybe 100 or

so0) so you can experiment with the effects of concurrency.

Chapter 16: Nodes-The Key to Distributing Services

Exercise: Nodes-1 (Page 222)

e Set up two terminal windows, and go to a different directory in each. Then start
up a named node in each. Then, in one window, write a function that lists the
contents of the current directory.

e fun = fn -> I0.puts(Enum.join(File.ls!, ",")) end

e Run it twice, once on each node.

Exercise: Nodes-2 (Page 226)

e When | introduced the interval server, | said it sent a tick “about every 2
seconds”. But in the receive loop, it has an explicit timeout of 2000mS. Why did

| say “about” when it looks as if the time should be pretty accurate?

Exercise: Nodes-3 (Page 226)

e Alter the code so that successive ticks are sent to each registered client (so the
first goes to the first client, the second the next client, and so on). Once the last
client receives a tick, it starts back at the first. The solution should deal with

new clients being added at any time.

Exercise: Nodes-4 (Page 228)

e The ticker process in this chapter is a central server that sends events to
registered clients. Reimplement this as a ring of clients. A client sends a tick to
the next client in the ring. After 2 seconds, that next client sends a tick to its
next client.

e When thinking about how to add clients to the ring, remember to deal with the
case where a client’s receive loop times out just as you're adding a new
process. What does this say about who has to be responsible for updating the

links?

Chapter 17: OTP:Servers

Exercise: OTP-Servers-1 (Page 234)

e You're going to start creating a server that implements a stack. The call that
initializes your stack will pass in a list that is the initial stack contents.

e For now, only implement the pop interface. It's acceptable for your server to
crash if someone tries to pop from an empty stack.

e For example, if initialized with [5," cat",9], successive calls to pop will return

5, "cat", and 9.

Exercise: OTP-Servers-2 (Page 237)

e Extend your stack server with a push interface which adds a single value to the

top of the stack. This will be implemented as a cast.

e Experiment in iex with pushing and popping values.

Exercise: OTP-Servers-3 (Page 244)

e Give your stack server process a name, and make sure it is accessible by that

name in iex.

Exercise: OTP-Servers-4 (Page 244)

e Add the API to your stack module (the functions that wrap the

gen_servercalls).

Exercise: OTP-Servers-5 (Page 244-245)

¢ Implement the terminate callback in your stack handler. Use I0.puts to
report the arguments it receives.

e Try various ways of terminating your server. For example, popping an empty
stack will raise an exception. You might add code that calls System.halt(n)
if the push handler receives a number less than 10. (This will let you generate

different return codes). Use your imagination to try different scenarios.

Chapter 18: OTP:Supervisors

Exercise: OTP-Supervisors-1 (Page 250)

e Add a supervisor to your stack application. Use iex to make sure it starts the
server correctly. Use the server normally, and then crash it (try popping from an
empty stack). Did it restart? What was the stack contents after the restart?

Exercise: OTP-Supervisors-2 (Page 254)

e Rework your stack server to use a supervision tree with a separate stash
process to hold the state. Verify it works, and that when you crash the server

the state is retained across a restart.

Chapter 20: OTP:Applications

Exercise: OTP-Applications-1 (Page 282)

e Turn your stack server into an OTP application.

Exercise: OTP-Applications-2 (Page 282)

e So far, we haven't written any tests for the application. Is there anything you can

test? See what you can do.

Exercise: OTP-Applications-3 (Page 292)

Our boss notices that after we applied our version-0-to-version-1 code change, the

delta indeed works as specified. However, she also notices that if the server crashes,

the delta is forgotten—only the current number is retained. Create a new release that

stashes both values.

Chapter 22: Macros and Code Evaluation

Exercise: Macros and Code Evaluation-1 (Page 311)

e Write a macro called myunless that implements the standard

unlessfunctionality. You're allowed to use the regular if expresssion in it.

Exercise: Macros and Code Evaluation-2 (Page 311)

e Write a macro called times__n that takes a single numeric argument. It should
define a function in the module of the caller that itself takes a single argument,
and which multiplies that argument by n. The new function should be called
times_n. So, calling times_n(3) should create a function called times_3,
and calling times_3(4) should return 12. Here’'s an example of it in use:

® defmodule Test do

require Times
Times.times_n(3)
Times.times_n(4)

end

I0.puts Test.times_3(4) #=> 12
I0.puts Test.times_4(5) #=> 20

Exercise: Macros and Code Evaluation-3 (Page 317)

The Elixir test framework, ExUnit, uses some clever code quoting tricks. For
example, if you assert

assert5< 4

You'll get the error “expected 5 to be less than 4.”

The Elixir source code is on Github (at

https://github.com/elixir-lang/elixir

)- The implementation of this is in the file
/lib/ex_unit/lib/assertions.ex. Spend some time reading this file, and
work out how it implements this trick.

(Hard) Once you're done that, see if you can use the same technique to
implement a function that takes an arbitrary arithmetic expression and returns a
natural language version.

explain do: 2 + 3*4

#=> multiply 3 and 4, then add 2

Chapter 23: Linking Modules: Behavio(u)rs and use

Exercise: Linking Modules-Behaviours and Use-1 (Page 326)

In the body of the def macro, there's a quote block that defines the actual
method. It contains:

I0.puts "==> call: #{Tracer.dump_definition(unquote(name),

unquote(args))}"
result = unquote(content)

I0.puts "<== result: #{result}"

e Why does the first call to puts have to unquote the values in its interpolation,

but the second call does not?

Exercise: Linking Modules-Behaviours and Use-2 (Page 326-327)

e The built-in function IO.ANSI.escape will insert ANSI escape sequences in a
string. If you put the resulting strings to a terminal, you can add colors and bold
or underlined text. Explore the library, and then use it to colorize the output of

our tracing.

Exercise: Linking Modules-Behaviours and Use-3 (Page 327)

e (Hard). Try adding a method definition with a guard clause to the Test module.
You'll find that the tracing now longer works.
o Find out why
o See if you can fix it

e (You may need to explore Kernel.def/4)

Chapter 24: Protocols-Polymorphic Functions

Exercise: Protocols-1 (Page 332)

e A basic Caesar cypher consists of shifting the letters is a message by a fixed
offset. For an offset of 1, for example, a will become b, b will become ¢, and z

will become a. If the offset is 13, we have the ROT13 algorithm.

e Lists and binaries can both be string-like. Write a Caesar protocol that applies
to both. It would include two functions: encrypt(string, shift) and
rotl13(string).

Exercise: Protocols-2 (Page 332)

e Use a list of words in your language to look for words where rot13(word) is
also a word in the list. For various types of English word list, have a look at
http://wordlist.sourceforge.net/

e . The SCOWL collection looks promising, as it already has words divided by

size.

Exercise: Protocols-3 (Page 345)

e Collections that implement the Enumerable protocol define
count member?, and reduce functions. The Enum module uses these to
implement methods such as each, filter, and map.

e Implement your own versions of each, filter, and map in terms of reduce.

Exercise: Protocols-4 (Page 345)

e In many cases, inspect will return a valid Elixir literal for the value being
inspected. Update the inspect function for records so that it returns valid Elixir

code to contruct a new record equal to the value being inspected.

Chapter 25: More Cool Stuff

Exercise: More Cool Stuff-1 (Page 350)

e Write a sigil %os that parses multiple lines of comma-separated data, returning
a list where each element is a row of data, and each row is a list of values. Don’t
worry about quoting—just assume that each field is separated by a comma. So

° CSsV = o/ocllllll

1,2,3
cat,dog

e Would generate [[||1||,||2||,||3||]’ ["Cat","dog"]]

Exercise: More Cool Stuff-2 (Page 350)

e The function String.to_float converts a string to either a float or an integer,

returning :error if the string was not a valid nhumber.

Update your CSV sigil so that numbers are automatically converted:

csv = %c"""

1,2,3.14
cat,dog

Would generate [[1,2,3.14], ["cat","dog"]]

Exercise: More Cool Stuff-3 (Page 350-351)

(Harder) Sometimes the first line of a CSV file is a list of the column names.
Update your code to support this, and return the values in each row as a

keyword list using the column names as the keys.

csVv = %cC

Item,Qty,Price
Teddy bear,4,34.95
Milk,1,2.99
Battery,6,8.00

Would generate:

[
[Item: "Teddy bear", Qty: 4, Price: 34.95],
[Item: "Milk", Qty: 1, Price: 2.99],
[Item: "Battery", Qty: 6, Price: 8.00]

1

