
Extracted from:

Programming Elixir ≥ 1.6
Functional |> Concurrent |> Pragmatic |> Fun

This PDF file contains pages extracted from Programming Elixir ≥ 1.6, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Elixir ≥ 1.6
Functional |> Concurrent |> Pragmatic |> Fun

Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Candace Cunningham
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-299-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

You’d expect that a relatively new language would come with a fairly minimal
set of tools—after all, the development team will be having fun playing with
the language.

Not so with Elixir. Tooling was important from the start, and the core team has
spent a lot of time providing a world-class environment in which to develop code.

In this short chapter, we’ll look at some aspects of this.

This chapter is not the full list. We’ve already seen the ExDoc tool, which
creates beautiful documentation for your code. Later, when we look at OTP
applications, on page ?, we’ll experiment with the Elixir release manager, a
tool for managing releases while your application continues to run.

For now, let’s look at testing, code-exploration, and server-monitoring tools.

Debugging with IEx
You already know that IEx is the go-to utility to play with Elixir code. It also
has a secret and dark second life as a debugger. It isn’t fancy, but it lets you
get into a running program and examine the environment.

You enter the debugger when running Elixir code hits a breakpoint. There are
two ways of creating a breakpoint. One works by adding calls into the code
you want to debug. The other is initiated from inside IEx. We’ll look at both
using the following (buggy) code:

tooling/buggy/lib/buggy.ex
defmodule Buggy do

def parse_header(
<<
format::integer-16,
tracks::integer-16,

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/elixir16/code/tooling/buggy/lib/buggy.ex
http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

division::integer-16➤

>>
) do

IO.puts "format: #{format}"
IO.puts "tracks: #{tracks}"
IO.puts "division: #{decode(division)}"

end

def decode(<< 1::1, beats::15 >>) do
"♩ = #{beats}"

end

def decode(<< 0::1, fps::7, beats::8 >>) do
"#{-fps} fps, #{beats}/frame"

end
end

This code is supposed to decode the data part of a MIDI header frame. This
contains three 16-bit fields: the format, the number of tracks, and the time
division. This last field comes in one of two formats:

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 x x x x x x x x x x x x x x x

x = beats/quarter note

1 y y y y y y y z z z z z z z z

-y = SMPTE frame/s, z = beats/frame

�1

The parse_header/1 function splits the overall header into the three fields, and
the decode/1 function works out which type of time division we have.

Let’s run it, using a sample header I extracted from a MIDI file.

$ iex -S mix
iex> header = << 0, 1, 0, 8, 0, 120 >>
<<0, 1, 0, 8, 0, 120>>
iex> Buggy.parse_header header
format: 1
tracks: 8
** (FunctionClauseError) no function clause matching in Buggy.decode/1
iex>

Oh no! That was totally unexpected. It looks like we’re not passing the correct
value to decode. Let’s use the debugger to find out what’s going on.

Injecting Breakpoints Using IEx.pry
We can add a breakpoint to our source code using the pry function. For
example, to stop our code just before we call decode we could write this:

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

def parse_header(
<<

format::integer-16,
tracks::integer-16,

division::integer-16
>>

) do

require IEx; IEx.pry➤

IO.puts "format: #{format}"
IO.puts "tracks: #{tracks}"
IO.puts "division: #{decode(division)}"

end

(We need the require because pry is a macro.)

Let’s try the code now:

$ iex -S mix
iex> Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
Break reached: Buggy.parse_header/1 (lib/buggy.ex:11)

9:
10: require IEx; IEx.pry➤

11: IO.puts "format: #{format}"

pry> binding
[division: 120, format: 1, tracks: 8]
iex> continue()
format: 1
tracks: 8
** (FunctionClauseError) no function clause matching in Buggy.decode/1

We reached the breakpoint, and IEx entered pry mode. It showed us the
function we were in as well as the source lines surrounding the breakpoint.

At this point, IEx is running in the context of this function, so a call to binding
shows the local variables. The value in the division function is 120, but that
isn’t matching either of the parameters to decode.

Aha! decode is expecting a binary, not an integer. Let’s fix our code:

def parse_header(
<<

format::integer-16,
tracks::integer-16,

division::bits-16➤

>>
) do
...

The pry call is still in there, so let’s recompile and try again:

• Click HERE to purchase this book now. discuss

Debugging with IEx • 5

http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

iex> r Buggy
{:reloaded, Buggy, [Buggy]}
iex> Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
Break reached: Buggy.parse_header/1 (lib/buggy.ex:12)

10:) do
11:
12: require IEx; IEx.pry
13: IO.puts "format: #{format}"
14: IO.puts "tracks: #{tracks}"

pry> binding
[division: <<0, 120>>, format: 1, tracks: 8]
pry> continue
format: 1
tracks: 8
division: 0 fps, 120/frame
:ok

Now the division is a binary, and when we continue the code runs and outputs
the header fields. Except…it’s parsing the time division as if it were the SMPTE
version, and not the beats/quarter note version.

Setting Breakpoints with Break
The second way to create a breakpoint doesn’t involve any code changes.
Instead, you can use the break! command inside IEx to add a breakpoint on
any public function. Let’s remove the call to pry and run the code again. Inside
IEx we’ll add a breakpoint on the decode function:

iex> require IEx
IEx
iex> break! Buggy.decode/1
1
iex> breaks

ID Module.function/arity Pending stops
---- ----------------------- ---------------
1 Buggy.decode/1 1

iex> Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
format: 1
tracks: 8
Break reached: Buggy.decode/1 (lib/buggy.ex:21)

19: end
20:
21: def decode(<< 0::1, fps::7, beats::8 >>) do
22: "#{-fps} fps, #{beats}/frame"
23: end

pry> binding
[division: <<0, 120>>, format: 1, tracks: 8]

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

We hit the breakpoint, and we are indeed matching the wrong version of the
decode function when we pass it 0000000001111000. Ah, that’s because I’m dis-
criminating based on the value of the top bit, and I got it the wrong way
around: the SMPTE version should be

def decode(<< 1::1, fps::7, beats::8 >>) do

and the beats version should be

def decode(<< 0::1, beats::15 >>) do

There’s lots more functionality in the debugger. You can start by getting help
for IEx.break/4.

Does This Seem a Little Artificial?
I have a confession to make. The only time I use the Elixir breakpoint facility
is when I work on this section of the book. If I have to add code to the source
to break in the middle of a function, then I can just raise an exception there
instead to get the information I need. And the fact that I can only break at
public functions from inside IEx means that I can’t get the kind of granularity
I need to diagnose issues, because 90% of my functions are private.

However, I’m an old curmudgeon—my favorite editor is a card punch. Don’t
let my lack of enthusiasm stop you from trying the debugger.

Testing
We already used the ExUnit framework to write tests for our Issues tracker
app. But that chapter only scratched the surface of Elixir testing. Let’s dig
deeper.

Testing the Comments
When I document my functions, I like to include examples of the function
being used—comments saying things such as, “Feed it these arguments, and
you’ll get this result.” In the Elixir world, a common way to do this is to show
the function being used in an IEx session.

Let’s look at an example from our Issues app. The TableFormatter formatter
module defines a number of self-contained functions that we can document.

project/5/issues/lib/issues/table_formatter.ex
defmodule Issues.TableFormatter do

import Enum, only: [each: 2, map: 2, map_join: 3, max: 1]

@doc """

• Click HERE to purchase this book now. discuss

Testing • 7

http://media.pragprog.com/titles/elixir16/code/project/5/issues/lib/issues/table_formatter.ex
http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

Takes a list of row data, where each row is a Map, and a list of
headers. Prints a table to STDOUT of the data from each row
identified by each header. That is, each header identifies a column,
and those columns are extracted and printed from the rows.
We calculate the width of each column to fit the longest element
in that column.
"""
def print_table_for_columns(rows, headers) do

with data_by_columns = split_into_columns(rows, headers),
column_widths = widths_of(data_by_columns),
format = format_for(column_widths)

do
puts_one_line_in_columns(headers, format)
IO.puts(separator(column_widths))
puts_in_columns(data_by_columns, format)

end
end

@doc """
Given a list of rows, where each row contains a keyed list
of columns, return a list containing lists of the data in
each column. The `headers` parameter contains the
list of columns to extract

Example

iex> list = [Enum.into([{"a", "1"},{"b", "2"},{"c", "3"}], %{}),
...> Enum.into([{"a", "4"},{"b", "5"},{"c", "6"}], %{})]
iex> Issues.TableFormatter.split_into_columns(list, ["a", "b", "c"])
[["1", "4"], ["2", "5"], ["3", "6"]]

"""
def split_into_columns(rows, headers) do

for header <- headers do
for row <- rows, do: printable(row[header])

end
end

@doc """
Return a binary (string) version of our parameter.
Examples

iex> Issues.TableFormatter.printable("a")
"a"
iex> Issues.TableFormatter.printable(99)
"99"

"""
def printable(str) when is_binary(str), do: str
def printable(str), do: to_string(str)

@doc """
Given a list containing sublists, where each sublist contains the data for
a column, return a list containing the maximum width of each column.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

Example
iex> data = [["cat", "wombat", "elk"], ["mongoose", "ant", "gnu"]]
iex> Issues.TableFormatter.widths_of(data)
[6, 8]

"""
def widths_of(columns) do

for column <- columns, do: column |> map(&String.length/1) |> max
end

@doc """
Return a format string that hard-codes the widths of a set of columns.
We put `" | "` between each column.

Example
iex> widths = [5,6,99]
iex> Issues.TableFormatter.format_for(widths)
"~-5s | ~-6s | ~-99s~n"

"""
def format_for(column_widths) do

map_join(column_widths, " | ", fn width -> "~-#{width}s" end) <> "~n"
end

@doc """
Generate the line that goes below the column headings. It is a string of
hyphens, with + signs where the vertical bar between the columns goes.

Example
iex> widths = [5,6,9]
iex> Issues.TableFormatter.separator(widths)
"------+--------+----------"

"""
def separator(column_widths) do

map_join(column_widths, "-+-", fn width -> List.duplicate("-", width) end)
end

@doc """
Given a list containing rows of data, a list containing the header selectors,
and a format string, write the extracted data under control of the format string.
"""
def puts_in_columns(data_by_columns, format) do

data_by_columns
|> List.zip
|> map(&Tuple.to_list/1)
|> each(&puts_one_line_in_columns(&1, format))

end

def puts_one_line_in_columns(fields, format) do
:io.format(format, fields)

end
end

Note how some of the documentation contains sample IEx sessions. I like
doing this. It helps people who come along later understand how to use my

• Click HERE to purchase this book now. discuss

Testing • 9

http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

code. But, as importantly, it lets me understand what my code will feel like
to use. I typically write these sample sessions before I start on the code,
changing stuff around until the API feels right.

But the problem with comments is that they just don’t get maintained. The
code changes, the comment gets stale, and it becomes useless. Fortunately,
ExUnit has doctest, a tool that extracts the iex sessions from your code’s @doc
strings, runs it, and checks that the output agrees with the comment.

To invoke it, simply add one or more

doctest «ModuleName»
lines to your test files. You can add them to existing test files for a module
(such as table_formatter_test.exs) or create a new test file just for them. That’s
what we’ll do here. Let’s create a new test file, test/doc_test.exs, containing this:

project/5/issues/test/doc_test.exs
defmodule DocTest do

use ExUnit.Case
doctest Issues.TableFormatter➤

end

We can now run it:

$ mix test test/doc_test.exs
......
Finished in 0.00 seconds
5 doctests, 0 failures

And, of course, these tests are integrated into the overall test suite:

$ mix test
..............

Finished in 0.1 seconds
5 doctests, 9 tests, 0 failures

Let’s force an error to see what happens:

@doc """
Return a binary (string) version of our parameter.

Examples

iex> Issues.TableFormatter.printable("a")
"a"
iex> Issues.TableFormatter.printable(99)
"99.0"

"""

def printable(str) when is_binary(str), do: str
def printable(str), do: to_string(str)

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/elixir16/code/project/5/issues/test/doc_test.exs
http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

And run the tests again:

$ mix test test/doc_test.exs
.........

1) test doc at Issues.TableFormatter.printable/1 (3) (DocTest)
Doctest failed
code: " Issues.TableFormatter.printable(99) should equal \"99.0\""
lhs: "\"99\""
stacktrace:

lib/issues/table_formatter.ex:52: Issues.TableFormatter (module)
6 tests, 1 failures

Structuring Tests
You’ll often find yourself wanting to group your tests at a finer level than per
module. For example, you might have multiple tests for a particular function,
or multiple functions that work on the same test data. ExUnit has you covered.

Let’s test this simple module:

tooling/pbt/lib/stats.ex
defmodule Stats do

def sum(vals), do: vals |> Enum.reduce(0, &+/2)
def count(vals), do: vals |> length
def average(vals), do: sum(vals) / count(vals)

end

Our tests might look something like this:

tooling/pbt/test/describe.exs
defmodule TestStats do

use ExUnit.Case

test "calculates sum" do
list = [1, 3, 5, 7, 9]
assert Stats.sum(list) == 25

end

test "calculates count" do
list = [1, 3, 5, 7, 9]
assert Stats.count(list) == 5

end

test "calculates average" do
list = [1, 3, 5, 7, 9]
assert Stats.average(list) == 5

end
end

There are a couple of issues here. First, these tests only pass in a list of
integers. Presumably we’d want to test with floats, too. So let’s use the describe
feature of ExUnit to document that these are the integer versions of the tests:

• Click HERE to purchase this book now. discuss

Testing • 11

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/lib/stats.ex
http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/describe.exs
http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

tooling/pbt/test/describe.exs
defmodule TestStats0 do

use ExUnit.Case

describe "Stats on lists of ints" do
test "calculates sum" do
list = [1, 3, 5, 7, 9]
assert Stats.sum(list) == 25

end

test "calculates count" do
list = [1, 3, 5, 7, 9]
assert Stats.count(list) == 5

end

test "calculates average" do
list = [1, 3, 5, 7, 9]
assert Stats.average(list) == 5

end
end

end

If any of these fail, the message would include the description and test name:

test Stats on lists of ints calculates sum (TestStats0)
test/describe.exs:12
Assertion with == failed
...

A second issue with our tests is that we’re duplicating the test data in each
function. In this particular case this is arguably not a major problem. There
are times, however, where this data is complicated to create. So let’s use the
setup feature to move this code into a single place. While we’re at it, we’ll also
put the expected answers into the setup. This means that if we decide to
change the test data in the future, we’ll find it all in one place.

tooling/pbt/test/describe.exs
defmodule TestStats1 do

use ExUnit.Case

describe "Stats on lists of ints" do

setup do
[list: [1, 3, 5, 7, 9, 11],

sum: 36,
count: 6

]
end

test "calculates sum", fixture do
assert Stats.sum(fixture.list) == fixture.sum

end

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/describe.exs
http://media.pragprog.com/titles/elixir16/code/tooling/pbt/test/describe.exs
http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

test "calculates count", fixture do
assert Stats.count(fixture.list) == fixture.count

end

test "calculates average", fixture do
assert Stats.average(fixture.list) == fixture.sum / fixture.count

end
end

end

The setup function is invoked automatically before each test is run. (There’s
also a setup_all function that is invoked just once for the test run.) The setup
function returns a keyword list of named test data. In testing circles, this
data, which is used to drive tests, is called a fixture.

This data is passed to our tests as a second parameter, following the test
name. In my tests, I’ve called this parameter fixture. I then access the individ-
ual fields using the fixture.list syntax.

In the code here I passed a block to setup. You can also pass the name of a
function (as an atom).

Inside the setup code you can define callbacks using on_exit. These will be invoked
at the end of the test. They can be used to undo changes made by the test.

There’s a lot of depth in ExUnit. I’d recommend spending a little time in the
ExUnit docs.1

1. http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html

• Click HERE to purchase this book now. discuss

Testing • 13

http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html
http://pragprog.com/titles/elixir16
http://forums.pragprog.com/forums/elixir16

