P}‘he atic

ogrammers

Eloguent
uby

Second Edition

Russ Olsen

edited by Michael Swaine

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

Facets of Ruby

Series editor: Noel Rappin

https://www.pragprog.com

In the history of programming languages, operator overloading—the ability
to put your own code behind built-in operators like + and *—has had a
somewhat checkered career: The very minimalistic C programming language
had no room for programmer-defined operators. By contrast, C++ embraced
operator overloading as does Python. Programmer-defined operators vanished
again with Java and JavaScript, only to rematerialize with Ruby.

All of this to-ing and fro-ing betrays a certain ambivalence about programmer-
defined operators on the part of language designers. In this chapter we will
look at how you define operators for your Ruby classes and how they might
be useful. Along the way we will look into some of the deep pits that wait for
you on the road to building your own operators and perhaps gain a little
insight into why this is one of those features that falls in and out of vogue.
Most importantly, we will talk at some length about how you can dodge those
black pits by knowing when not to define an operator.

Defining Operators in Ruby

One of the nice things about Ruby is that the language keeps very few secrets
from its programmers. Many of the tools used to construct the basic workings
of the Ruby programming language are available to the ordinary Joe Program-
mer. Operators are a good example of this: If you were so inclined, you could
implement your own Float class and—at least as far as operators like +, -, *,
and / are concerned—your handcrafted Float would be indistinguishable from
the Float class that comes with Ruby.

The Ruby mechanism for defining your own operators is straightforward and
based on the fact that Ruby translates every expression involving programmer-
definable operators into an equivalent expression where the operators are
replaced with method calls. So when you say this:

sum = first + second
What you are really saying is:
sum = first.+(second)

The second expression sets the variable sum to the result of calling the +
method on first, passing in second as an argument. Other than + being a strange-
looking method name (it is, however, a perfectly good Ruby method name),
the second expression is a simple assignment involving a method call. It is
also exactly equivalent to the first expression. The Ruby interpreter is clever
about the operator-to-method translation process and will make sure that

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eruby2
http://forums.pragprog.com/forums/eruby2

o4

the translated expression respects operator precedence and parentheses, so
that this:

result = first + second * (third - fourth)

Will smoothly translate into:
result = first.+(second.*(third.-fourth))

What this means is that creating a class that supports operators boils down

to defining a bunch of instance methods, methods with names like +, -, and
*

To make all of this a little more concrete, let’s add an operator to our Document
class. Documents aren’t the most operator friendly of objects, but we might
think of adding two documents together to produce a bigger document:

operators/doc_with_operators.rb
class Document
Most of the class omitted. .
#
def +(other)
Document.new(
title: title,
author: author,
content: "#{content} #{other.content}")
end
end

With this code we can now sum up our documents, so that if we run:

docl = Document.new(
title: "Tag Linel",
author: "Kirk",
content: "These are the voyages")

doc2 = Document.new(
title: "Tag Line2",
author: "Kirk",
content: "of the star ship ...")

total document = docl + doc2
puts total document.content

We will see the famous tag line:

These are the voyages of the star ship ...

A Sampling of Operators

Of course, + is not the only operator you can overload. Ruby allows you to
define more than twenty five operators for your classes. Among these are the

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/eruby2/code/operators%2Fdoc_with_operators.rb
http://pragprog.com/titles/eruby2
http://forums.pragprog.com/forums/eruby2

A Sampling of Operators ¢ 5

other familiar arithmetic operators of subtraction (-), division (/), and multipli-
cation (*), along with the modulo operator (%). You can also define your own
version of the bit-oriented and (&) or (|), as well as the exclusive or (") operator.

Another widely defined operator is the bitwise left shift operator, <<. This
operator is not popular because Ruby programmers do a lot of bit fiddling;
it’s popular because it has taken on a second meaning as the concatenation,
or “add another one,” operator:

names = []
names << "Rob" # names.size 1is now 1
names << "Denise" # names.size is now 2

Along with binary operators like << and *—which do their thing on a pair of
objects—Ruby also lets you define single object, or unary, operators. One
such unary operator is the ! operator. Here’s a somewhat silly unary operator
definition for the ! operator:

operators/doc_with_operators.rb
class Document
Stuff omitted...

def !
Document.new(
title: title,
author: author,
content: "It is not true: #{content}")
end
end

This code enables us to have a tongue-in-cheek argument with ourselves.
Start with this:

favorite = Document.new(
title: "Favorite",
author: "Russ",
content: "Chocolate is best")

And !favorite will have a content of:
It is not true: Chocolate is best

The + and - operators are interesting in that they can be both binary and
unary.For example, in the expression -(2+6), the minus sign is a unary operator
that changes the sign of the final result while the plus sign is a binary operator
that adds the numbers together. But rewrite the expression as +(2-6) and the
operator roles are reversed. We saw earlier that defining the + method on
your class defines the binary addition operator. To create the unary operator,
you need to define a method with the special (and rather arbitrary) name +@.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/eruby2/code/operators%2Fdoc_with_operators.rb
http://pragprog.com/titles/eruby2
http://forums.pragprog.com/forums/eruby2

°6

The same pattern applies to -: The plain old - method defines the binary
operator while -@ defines the unary one. Here, for example, are some silly
unary operator definitions for our Document class:

class Document
Most of the class taking a break...

def +@
Document.new(
title: title,
author: author,
content: "I am sure that #{@content}")
end

def -@
Document.new(
title: title,
author: author,
content: "I doubt that #{@content}")
end
end

Which lets us do this:

unsure = -(+favorite)

So we end up with a document containing this wonderful statement of dietary
angst:

| doubt that | am sure that Chocolate is best

Ruby programmers can also define a couple of methods that will make their
objects look like arrays or hashes: [] and []=. Although technically these
bracketed methods are not operators, the Ruby parser sprinkles some very
operator-like syntactic sugar on them: When you say foo[4] you are really
calling the [] method on foo, passing in four as an argument. Similarly, when
you say foo[4] = 99, you are actually calling the []= method on foo, passing in
four and ninety-nine.

You might, for example, define a [] method, a method that will make Document
instances look like an arrays of words:

class Document
Most of the class omitted..
def [](index)
words[index]
end
end

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eruby2
http://forums.pragprog.com/forums/eruby2

A Sampling of Operators ¢ 7
If you do add the bracket methods to your object, you will probably also want

to put in a size method too, otherwise your users won't be able to tell when
they are running off the end of the pseudo-array.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/eruby2
http://forums.pragprog.com/forums/eruby2

