
Extracted from:

Simplifying JavaScript
Writing Modern JavaScript with ES5, ES6, and Beyond

This PDF file contains pages extracted from Simplifying JavaScript, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Simplifying JavaScript
Writing Modern JavaScript with ES5, ES6, and Beyond

Joe Morgan

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Andrea Stewart
Copy Editor: Nancy Rapoport
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-288-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Tip 33

Reduce Complexity with Arrow Functions

In this tip, you’ll learn how to use arrow functions to destructure arguments,
return objects, and construct higher-order functions.

You explored arrow functions once in Tip 20, Simplify Looping with Arrow
Functions, on page ?. It’s time to take a deeper dive.

As a reminder, arrow functions allow you to remove extraneous information,
such as the function declaration, parentheses, return statements, even curly
braces. Now you’re going to see how to handle a few more concepts that you’ve
just learned, such as destructuring. You’ll also get an introduction to new
ideas that you’ll explore further in future tips.

Let’s begin with destructuring. You’re going to take an object that has a first and
last name and combine them in a string. You can’t get more simple than that.

functions/arrow/problem.js
const name = {

first: 'Lemmy',
last: 'Kilmister',

};

function getName({ first, last }) {
return `${first} ${last}`;

}

That should be very easy to convert to an arrow function. Remove everything
except the parameter and the template literal. Add a fat arrow, =>, and you
should be done.

Not quite. Everything is the same except the parameters. When you’re using
any kind of special parameter action—destructuring, rest parameters, default
parameters—you still need to include the parentheses.

This sounds trivial, but it will trip you up if you aren’t aware. It’s hard for the
JavaScript engine to know if you’re performing a function declaration and
not an object declaration. You’ll get an error like this:

functions/arrow/close.js
const getName = { first, last } => `${first} ${last}`;

// Error: Unexpected token '=>'. Expected ';' after variable declaration

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/es6tips/code/functions/arrow/problem.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/close.js
http://pragprog.com/titles/es6tips
http://forums.pragprog.com/forums/es6tips

And that’s if you’re lucky. If you try this in a Node.js REPL, it will just hang
like you forgot to add a closing curly brace. It can be very confusing.

The solution is simple: If you’re using any special parameters, just wrap the
parameter in parentheses as you normally would.

functions/arrow/arrow.js
const comic = {

first: 'Peter',
last: 'Bagge',
city: 'Seattle',
state: 'Washington',

};

const getName = ({ first, last }) => `${first} ${last}`;
getName(comic);
// Peter Bagge

If you’re returning an object, you have to be careful when omitting the return
statement. Because an arrow function can’t tell whether the curly braces are
for an object or to wrap a function body, you’ll need to indicate the return
object by wrapping the whole thing in parentheses.

functions/arrow/arrow.js
const getFullName = ({ first, last }) => ({ fullName: `${first} ${last}` });
getFullName(comic);
// { fullName: 'Peter Bagge' }

It gets even better. When you return a value using parentheses, you aren’t
limited to a single line. You can return multi-line items while still omitting
the return statement.

functions/arrow/arrow.js
const getNameAndLocation = ({ first, last, city, state }) => ({

fullName: `${first} ${last}`,
location: `${city}, ${state}`,

});
getNameAndLocation(comic);
// {
// fullName: 'Peter Bagge',
// location: 'Seattle, Washington'
// }

Finally, arrow functions are great ways to make higher-order functions—func-
tions that return other functions. You’ll explore higher-order functions in
upcoming tips, so for now, let’s just see how to structure them.

Because a higher-order function is merely a function that returns another
function, the initial parameter is the same. And you can return a function
from the body like you always would.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js
http://pragprog.com/titles/es6tips
http://forums.pragprog.com/forums/es6tips

functions/arrow/problem.js
const discounter = discount => {

return price => {
return price * (1 - discount);

};
};
const tenPercentOff = discounter(0.1);
tenPercentOff(100);
// 90

Of course, because the return value is another function, you can leverage the
implicit return to return the function without even needing extra curly braces.
Try it out.

functions/arrow/arrow.js
const discounter = discount => price => price * (1 - discount);

const tenPercentOff = discounter(0.1);
tenPercentOff(100);
// 90;

If you’re anything like me, you’re probably already forgetting all about higher-
order functions. When are you going to use them? Turns out, they can be
very helpful. Not only are they great ways to lock in parameters, but they’ll
also help you take some of the ideas you’ve already seen—array methods,
rest parameters—even further.

In all the examples, you invoked the higher-order functions by first assigning
the returned function to a variable before calling that with another parameter.
That’s not necessary. You can call one function after the other by just adding
the second set of parameters in parentheses right after the first. This essen-
tially turns a higher-order function into a single function with two different
parameter sets.

functions/arrow/arrow.js
discounter(0.1)(100);
// 90

In the next tip, you’ll see why using higher-order functions to keep parameters
separate is such a game changer by learning how to create single responsibil-
ity parameters.

• Click HERE to purchase this book now. discuss

Reduce Complexity with Arrow Functions • 9

http://media.pragprog.com/titles/es6tips/code/functions/arrow/problem.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js
http://pragprog.com/titles/es6tips
http://forums.pragprog.com/forums/es6tips

