
Extracted from:

Swift Style, Second Edition
An Opinionated Guide to an Opinionated Language

This PDF file contains pages extracted from Swift Style, Second Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Swift Style, Second Edition
An Opinionated Guide to an Opinionated Language

Erica Sadun

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

Swift and the Swift Logo are trademarks of Apple, Inc. and are used by permission. Swift
Style, Second Edition: An Opinionated Guide to an Opinionated Language is an independent
publication and has not been authorized, sponsored, or otherwise approved by Apple, Inc.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Brian MacDonald
Copy Editor: Nicole Abramowitz

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-627-3
Book version: P1.0—March 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

This book is dedicated to the Swift community
both inside and outside Apple.

Evaluating Case-Binding Syntax
Swift case binding is one of the least straightforward components of the entire
language. Case binding enables you to match an enumeration case and then
bind that case’s associated values to new constants and variables. Where you
place those let and var keywords to bind case values involves nontrivial
choices.

Safety and consistency play important roles in these decisions. You must
choose whether to favor readability or error prevention, even though the
likelihood of errors is quite small.

This section explores two distinct styles—external and internal case bind-
ing—and details the advantages of each. I recommend you adopt a consistent
internal style, which was not my practice prior to writing this book. In
researching this topic, I learned that you can safely navigate a variety of pitfalls
by preferring this less-attractive but more-reliable style.

External Case Binding
External case binding places a single let or var keyword outside the enumeration
case. I warn you that I’m going to recommend against this practice, but before
I do, here’s how external binding works.

Moving keywords out of their tuples combines binding into a single additional
keyword. The results use fewer characters and create a simpler syntax. Here
are some examples that showcase both approaches:

enum StatusCode {
case status(code: Int, message: String)
case error(Error)

}

let fetch: StatusCode =
.status(code: 418, message: "I'm a teapot")

if case .status(let code, let message) = fetch { // more words
print(code, message) // 418 I'm a teapot

}

if case let .status(code, message) = fetch { // fewer words
print(code, message) // 418 I'm a teapot

}

The external version produces a consistent code style for every binding,
whether or not you ignore individual values. These next examples demonstrate
the uniform presentation of prefixed let/var keywords. The style is uncompli-

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

cated and won’t change based on the number of associated values or bound
symbols:

enum Value<T> { case one(T), two(T, T), three(T, T, T) }

let example1: Value<Character> = .one("a")
let example2: Value<Character> = .two("a", "b")
let example3: Value<Character> = .three("a", "b", "c")

if case let .one(a) = example1 {}
if case let .two(a, _) = example2 {}
if case let .two(a, b) = example2 {}
if case let .two(_, b) = example2 {}
if case let .three(a, b, c) = example3 {}
if case let .three(_, b, c) = example3 {}
if case let .three(_, _, c) = example3 {}

Internal Case Binding
Internal case binding is not as pretty or consistent as its external alternative,
but I’ve come around to adopting this style. While the internal approach
involves extra syntax for each bound symbol, it is safer. Consistent internal
binding, as in the following example, avoids errors introduced by a variety of
uncommon edge cases:

if case .three(let a, let b, let c) = example3 {}

When pattern matching, it’s common to bind a variable or constant and
uncommon to use a bound value as an argument. Despite this rarity, adopting
an “always explicit, always within the parentheses” rule adds consistency
and safety to your code.

The following example showcases an always-internal binding style used with
an externally bound symbol. Under this style, binding is limited to each key-
word’s site. The oldValue constant will not be changed by the if-case statement:

let oldValue = "x"
...
// This safely binds and simultaneously matches.
if case .two(let newValue, oldValue) = example2 {

...
}

Consistent in-place binding avoids the accidental shadowing demonstrated
in the following example. Overbinding shadow errors cannot happen when
you adopt universal internal binding:

// This is an error because the intent is
// to bind newValue and match oldValue
if case let .two(newValue, oldValue) = example2 {

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

// Wrongly matches "a", "b".
//
// `oldValue` is shadowed here, assigned the
// value from the second field of the
// enumeration's associated values.
... use newValue ...

}

Admittedly, this is an outlier case. Pattern matching rarely uses already bound
values. If you’ve adopted an external binding style, you can express this situ-
ation with a separate and explicit where or comma-delimited condition clause,
as in the following example. This code introduces additional syntax and adds
an extra variable binding (currentValue):

// This implements pattern binding and matching
// the given value but the extra condition separates
// these into two distinct goals
if case let .two(newValue, currentValue) = example2,

currentValue == oldValue
{

// correctly won't match "a", b"
... use newValue ...

}

Even here, safety can be problematic. If you inadvertently pass a wrong value
to the condition clause, you’ll introduce a hard-to-find error. In the following
code, I’ve accidentally typed newValue when I meant to type oldValue. This code
will compile, but its logic is flawed. Consistent internal binding avoids this
error, too.

// This error (`newValue` instead of `oldValue`) will not
// be caught by the compiler and is hard to catch by
// inspection.
if case let .two(newValue, currentValue) = example2,

currentValue == newValue
{

// correctly won't match "a", b"
... use newValue ...

}

Internal binding can be easier for new language adopters to read. Even without
binding, if case is confusing. Both if case let and if case var (plus case var and case
let) may look like single compound keywords rather than a combination of
two distinct actions to developers unfamiliar with this syntax.

There’s one final reason to adopt always internal binding. When you need to
mix let and var binding, you must use internal binding. This example shows
how that might look in your code:

• Click HERE to purchase this book now. discuss

Evaluating Case-Binding Syntax • 9

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

if case .three(_, let b, var c) = example3 {}

• Prefer consistent internal let and var binding. It’s safe and simple.

• There is but one let to rule them all and in the Swiftness bind them. Use that one
let internally and generously.

Ignoring Associated Values
When you want to match only on the case, omit wildcard patterns and just
mention the enumeration case. This allows you to ignore the content and
structure of the payload and focus strictly on the enumerated conditions
provided by the type:

switch statusCode {
case .error(_): // no

...
case .status(_, _): // extra no

...
}

switch statusCode {
case .error: // yes

...
case .status: // yes

...
}

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/esswift2
http://forums.pragprog.com/forums/esswift2

