
Extracted from:

Property-Based Testing with
PropEr, Erlang, and Elixir

Find Bugs Before Your Users Do

This PDF file contains pages extracted from Property-Based Testing with PropEr,
Erlang, and Elixir, published by the Pragmatic Bookshelf. For more information

or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Property-Based Testing with
PropEr, Erlang, and Elixir

Find Bugs Before Your Users Do

Fred Hebert

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-621-1
Book version: P1.0—January 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CSV Parsing
The first part of the program we’ll work on is handling CSV conversion. No
specific order is better than another in this case, and starting with CSV instead
of filtering or email rendering is entirely arbitrary. In this section, we’ll explore
how to come up with the right type of properties for encoding and decoding
CSV, and how to get decent generators for that task. We’ll also see how regular
example-based unit tests can be used to strengthen our properties, and see
how each fares compared to the other.

CSV is a loose format that nobody really implements the same way. It’s really
a big mess, even though RFC 41805 tries to provide a simple specification:

• Each record is on a separate line, separated by CRLF (a \r followed by a \n).

• The last record of the file may or may not have a CRLF after it. (It is
optional.)

• The first line of the file may be a header line, ended with a CRLF. In this
case, the problem description includes a header, which will be assumed
to always be there.

• Commas go between fields of a record.

• Any spaces are considered to be part of the record. (The example in the
problem description doesn’t respect that, as it adds a space after each
comma even though it’s clearly not part of the record.)

• Double quotes (") can be used to wrap a given field.

• Fields that contain line breaks (CRLF), double quotes, or commas must
be wrapped in double quotes.

• All records in a document contain the same number of fields.

• A double quote within a double-quoted field can be escaped by preceding
it with another double quote ("a""b" means a"b).

• Field values or header names can be empty.

• Valid characters for records include only

! #$%&'()*+-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

Which means the official CSV specs won’t let us have employees whose names
don’t fit that pattern, but if you want, you can always extend the tests later

5. https://tools.ietf.org/html/rfc4180

• Click HERE to purchase this book now. discuss

https://tools.ietf.org/html/rfc4180
http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

and improve things. For now though, we’ll implement this specification, and
as far as our program is concerned, whatever we find in the CSV file will be
treated as correct.

For example, if a row contains a, b, c, we’ll consider the three values to be "a",
" b", and " c" with the leading spaces, and patch them up in our program,
rather than modifying the CSV parser we’ll write. We’ll do this because, in
the long run, it’ll be simpler to reason about our system if all independent
components are well-defined reusable units, and we instead only need to
reason about adapters to glue them together. Having business-specific code
and workarounds injected through all layers of the code base is usually a
good way to write unmaintainable systems.

Out of the approaches we’ve seen in Chapter 3, Thinking in Properties, on
page ?, we could try the following:

• Modeling—make a simpler less efficient version of CSV parsing and com-
pare it to the real one.

• Generalizing example tests—a standard unit test would be dumping data,
then reading it, and making sure it matches expectations; we need to
generalize this so one property can be equivalent to all examples.

• Invariants—find a set of rules that put together represent CSV operations
well enough.

• Symmetric properties—serialize and unserialize the data, ensuring results
are the same.

The latter technique is the most interesting one for parsers and serializers,
since we need encoded data to validate decoding, and that decoding is required
to make sure encoding works well. Both sides will need to agree and be tested
together no matter what. Plugging both into a single property tends to be
ideal. All we need after that is to anchor the property with either a few tradi-
tional unit tests or simpler properties to make sure expectations are met.

Let’s start by writing tests first, so we can think of properties before writing
the code. Since we’ll do an encoding/decoding sequence, generating Erlang
terms that are encodable in CSV should be the first step. CSV contains rows
of text records separated by commas. We’ll start by writing generators for the
text records themselves, and assemble them later. We’ll currently stay with
the simplest CSV encoding possible: everything is a string. How to handle
integers, dates, and so on, tends to be application-specific.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

Because CSV is a text-based format, it contains some escapable sequences,
which turn out to always be problematic no matter what format you’re han-
dling. In CSV, as we’ve seen in the specification, escape sequences are done
through wrapping strings in double quotes ("), with some special cases for
escaping double quotes themselves. For now, let’s not worry about it, besides
making sure the case is well-represented in our data generators:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

field() -> oneof([unquoted_text(), quotable_text()]).

unquoted_text() -> list(elements(textdata())).

quotable_text() -> list(elements([$\r, $\n, $", $,] ++ textdata())).

textdata() ->
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
":;<=>?@ !#$%&'()*+-./[\\]^_`{|}~".

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def field() do
oneof([unquoted_text(), quotable_text()])

end

• Click HERE to purchase this book now. discuss

CSV Parsing • 7

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

using charlists for the easy generation
def unquoted_text() do

let chars <- list(elements(textdata())) do
to_string(chars)

end
end

def quotable_text() do
let chars <- list(elements('\r\n",' ++ textdata())) do

to_string(chars)
end

end

def textdata() do
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' ++

':;<=>?@ !#$%&\'()*+-./[\\]^_`{|}~'
end

The field() generator depends on two other generators: unquoted_text() and
quotable_text(). The former will be used to generate Erlang data that will require
no known escape sequence in it once converted, whereas the latter will be
used to generate sequences that may possibly require escaping (the four
escapable characters are only present in this one). Both generators rely on
textdata(), which contains all the valid characters allowed by the specification.

You’ll note that we’ve put an Erlang string for textdata() with alphanumeric
characters coming first, and that we pass it to list(elements()). This approach
will randomly pick characters from textdata() to build a string, but what’s
interesting is what will happen when one of our tests fail. Because elements()
shrinks toward the first elements of the list we pass to it, PropEr will try to
generate counterexamples that are more easily human-readable when possible
by limiting the number of special characters they contain. Rather than gener-
ating {#$%a~, it might try to generate ABFe#c once a test fails.

We can now put these records together. A CSV file will have two types of
rows: a header on the first line, and then data entries in the following lines.
In any CSV document, we expect the number of columns to be the same on
all of the rows:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

header(Size) -> vector(Size, name()).

record(Size) -> vector(Size, field()).

name() -> field().

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def header(size) do
vector(size, name())

end

def record(size) do
vector(size, field())

end

def name() do
field()

end

Those generators basically generate the same types of strings for both headers
and rows, with a known fixed length as an argument. name() is defined as field()
because they have the same requirements specification-wise, but it’s useful
to give each generator a name according to its purpose: if we end up modifying
or changing requirements on one of them, we can do so with minimal changes.
We can then assemble all of that jolly stuff together into one list of maps that
contain all the data we need:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

csv_source() ->
?LET(Size, pos_integer(),

?LET(Keys, header(Size),
list(entry(Size, Keys)))).

entry(Size, Keys) ->
?LET(Vals, record(Size),

maps:from_list(lists:zip(Keys, Vals))).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def csv_source() do
let size <- pos_integer() do

let keys <- header(size) do
list(entry(size, keys))

end
end

end

def entry(size, keys) do
let vals <- record(size) do

Map.new(Enum.zip(keys, vals))
end

end

• Click HERE to purchase this book now. discuss

CSV Parsing • 9

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

The csv_source() generator picks up a Size value that represents how many entries
will be in each row. By putting it in a ?LET macro, we make sure that whatever
the expression that uses Size is, it uses a discrete value, and not the generator
itself. This will allow us to use Size multiple times safely with always the same
value in the second ?LET macro. That second macro generates one set of headers
(the keys of every map), and then uses them to create a list of entries.

The entries themselves are specified by the entry/2 generator, which creates a
list of record values, and pairs them up with the keys from csv_source() into a
map. This generates values such as these:

$ rebar3 as test shell
«build output»
1> proper_gen:pick(prop_csv:csv_source()).
{ok,[#{[] => "z","&_f" => "t,:S","cH^*M" => "{6Z#"},

#{[] => "kS3>","&_f" => "/","cH^*M" => "eK"},
#{[] => "~","&_f" => [],"cH^*M" => "Bk#?X7h"}]}

2> proper_gen:pick(prop_csv:csv_source()).
{ok,[#{"D" => "\nQNUO","D4D" => "!E$0;)KL",

"R\r~P{qC-" => "4L(Q4-N9","T6FAGuhf" => "wSP4jONE3Q"},
#{"D" => "!Y7H\rQ?I7\r","D4D" => [],

"R\r~P{qC-" => "}66W2I9+?R","T6FAGuhf" => "pF8/C"},
#{"D" => [],"D4D" => "?'_6","R\r~P{qC-" => "j|Q",

"T6FAGuhf" => "f$s7=sFx2>"},
#{"D" => "e;ho1\njn!2","D4D" => ".8B{k|+|}",

"R\r~P{qC-" => "V","T6FAGuhf" => "a\"/J\rfE#$"},
«more maps»
As you can see, all the maps for a given batch share the same keys, but have
varying values. Those are ready to be encoded and passed to our property:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

prop_roundtrip() ->
?FORALL(Maps, csv_source(),

Maps =:= bday_csv:decode(bday_csv:encode(Maps))).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

property "roundtrip encoding/decoding" do
forall maps <- csv_source() do

maps == Csv.decode(Csv.encode(maps))
end

end

Running it at this point would be an instant failure since we haven’t written
the code to go with it. Since this chapter is about tests far more than how to

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

implement a CSV parser, we’ll go over the latter rather quickly. Here’s an
implementation that takes about a hundred lines:

Erlang code/ResponsibleTesting/erlang/bday/src/bday_csv.erl

-module(bday_csv).
-export([encode/1, decode/1]).

%% @doc Take a list of maps with the same keys and transform them
%% into a string that is valid CSV, with a header.
-spec encode([map()]) -> string().
encode([]) -> "";
encode(Maps) ->

Keys = lists:join(",", [escape(Name) || Name <- maps:keys(hd(Maps))]),
Vals = [lists:join(",", [escape(Field) || Field <- maps:values(Map)])

|| Map <- Maps],
lists:flatten([Keys, "\r\n", lists:join("\r\n", Vals)]).

%% @doc Take a string that represents a valid CSV data dump
%% and turn it into a list of maps with the header entries as keys
-spec decode(string()) -> list(map()).
decode("") -> [];
decode(CSV) ->

{Headers, Rest} = decode_header(CSV, []),
Rows = decode_rows(Rest),
[maps:from_list(lists:zip(Headers, Row)) || Row <- Rows].

First, there’s the public interface with two functions: encode/1 and decode/1. The
functions are fairly straightforward, delegating the more complex operations
to private helper functions. Let’s start by looking at those helping with
encoding:

%%%%%%%%%%%%%%%
%%% PRIVATE %%%
%%%%%%%%%%%%%%%

%% @private return a possibly escaped (if necessary) field or name
-spec escape(string()) -> string().
escape(Field) ->

case escapable(Field) of
true -> "\"" ++ do_escape(Field) ++ "\"";
false -> Field

end.

%% @private checks whether a string for a field or name needs escaping
-spec escapable(string()) -> boolean().
escapable(String) ->

lists:any(fun(Char) -> lists:member(Char, [$",$,,$\r,$\n]) end, String).

• Click HERE to purchase this book now. discuss

CSV Parsing • 11

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

%% @private replace escapable characters (only `"') in CSV.
%% The surrounding double-quotes are not added; caller must add them.
-spec do_escape(string()) -> string().
do_escape([]) -> [];
do_escape([$"|Str]) -> [$", $" | do_escape(Str)];
do_escape([Char|Rest]) -> [Char | do_escape(Rest)].

If a string is judged to need escaping (according to escapable/1), then the string
is wrapped in double quotes (") and all double quotes inside of it are escaped
with another double quote. With this, encoding is covered. Next there’s
decoding’s private functions:

%% @private Decode the entire header line, returning all names in order
-spec decode_header(string(), [string()]) -> {[string()], string()}.
decode_header(String, Acc) ->

case decode_name(String) of
{ok, Name, Rest} -> decode_header(Rest, [Name | Acc]);
{done, Name, Rest} -> {[Name | Acc], Rest}

end.

%% @private Decode all rows into a list.
-spec decode_rows(string()) -> [[string()]].
decode_rows(String) ->

case decode_row(String, []) of
{Row, ""} -> [Row];
{Row, Rest} -> [Row | decode_rows(Rest)]

end.

%% @private Decode an entire row, with all values in order
-spec decode_row(string(), [string()]) -> {[string()], string()}.
decode_row(String, Acc) ->

case decode_field(String) of
{ok, Field, Rest} -> decode_row(Rest, [Field | Acc]);
{done, Field, Rest} -> {[Field | Acc], Rest}

end.

%% @private Decode a name; redirects to decoding quoted or unquoted text
-spec decode_name(string()) -> {ok|done, string(), string()}.
decode_name([$" | Rest]) -> decode_quoted(Rest);
decode_name(String) -> decode_unquoted(String).

%% @private Decode a field; redirects to decoding quoted or unquoted text
-spec decode_field(string()) -> {ok|done, string(), string()}.
decode_field([$" | Rest]) -> decode_quoted(Rest);
decode_field(String) -> decode_unquoted(String).

Decoding is done by fetching headers, then fetching all rows. A header line
is parsed by reading each column name one at a time, and a row is parsed
by reading each field one at a time. At the end you can see that both fields
and names are actually implemented as quoted or unquoted strings:

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

%% @private Decode a quoted string
-spec decode_quoted(string()) -> {ok|done, string(), string()}.
decode_quoted(String) -> decode_quoted(String, []).

%% @private Decode a quoted string
-spec decode_quoted(string(), [char()]) -> {ok|done, string(), string()}.
decode_quoted([$"], Acc) -> {done, lists:reverse(Acc), ""};
decode_quoted([$",$\r,$\n | Rest], Acc) -> {done, lists:reverse(Acc), Rest};
decode_quoted([$",$, | Rest], Acc) -> {ok, lists:reverse(Acc), Rest};
decode_quoted([$",$" | Rest], Acc) -> decode_quoted(Rest, [$" | Acc]);
decode_quoted([Char | Rest], Acc) -> decode_quoted(Rest, [Char | Acc]).

%% @private Decode an unquoted string
-spec decode_unquoted(string()) -> {ok|done, string(), string()}.
decode_unquoted(String) -> decode_unquoted(String, []).

%% @private Decode an unquoted string
-spec decode_unquoted(string(), [char()]) -> {ok|done, string(), string()}.
decode_unquoted([], Acc) -> {done, lists:reverse(Acc), ""};
decode_unquoted([$\r,$\n | Rest], Acc) -> {done, lists:reverse(Acc), Rest};
decode_unquoted([$, | Rest], Acc) -> {ok, lists:reverse(Acc), Rest};
decode_unquoted([Char | Rest], Acc) -> decode_unquoted(Rest, [Char | Acc]).

Elixir translation on page ?.

Both functions to read quoted or unquoted strings mostly work the same,
except quoted ones have specific rules about unescaping content baked in.
And with this, our CSV handling is complete.

The code was developed against the properties by running the tests multiple
times and refining the implementation iteratively. For brevity, we’ll skip all
the failed attempts that did some dirty odd parsing, except for one failing
implementation that’s particularly interesting since it had a failure against
the following input:

\r\na

This is technically a valid CSV file with a single column, for which the empty
name "" is chosen (commas only split values, so a single \r\n means a 0-length
string as a value on that line), and with a single value "a". The expected output
from decoding this is [#{"" ⇒ "a"}]. The first version of the parser had no way
to cope with such cases, since I couldn’t imagine them either. The parser
shown previously is handling such cases, but the digging and rewriting has
been skipped for brevity.

If you run the property over the previous (correct) implementation, you’ll find
it still fails on this tricky test:

bday_csv:encode([#{""=>""},#{""=>""}]) => "\r\n\r\n"
bday_csv:decode("\r\n\r\n") => [#{"" => ""}]

• Click HERE to purchase this book now. discuss

CSV Parsing • 13

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

This is an ambiguity embedded directly in the CSV specification. Because a
trailing \r\n is acceptable, it is impossible to know whether there is an empty
trailing line or not in the case of one-column data sets. Above one column,
at least one comma (,) is going to be on the line. At one column, there is no
way to know.

Under fifty lines of tests were enough to discover inconsistencies in RFC 4180
itself, inconsistencies that can’t be reconciled or fixed in our program. Instead,
we’ll have to relax the property, making sure we don’t cover that case by
changing csv_source() and adding +1 to every Size value we generate. That way,
we shift the range for columns from 1..N to 2..(N+1), ensuring we always have
two or more columns in generated data.

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

csv_source() ->
?LET(Size, pos_integer(),

?LET(Keys, header(Size+1),
list(entry(Size+1, Keys)))).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

def csv_source() do
let size <- pos_integer() do

let keys <- header(size + 1) do
list(entry(size + 1, keys))

end
end

end

After this change, the property works fine. For good measure, we should add
a unit test representing the known unavoidable bug to the same test suite,
documenting known behavior:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

-module(prop_csv).
-include_lib("proper/include/proper.hrl").
-include_lib("eunit/include/eunit.hrl").
-compile(export_all).

«existing code»
%%%%%%%%%%%%%
%%% EUnit %%%
%%%%%%%%%%%%%

%% @doc One-column CSV files are inherently ambiguous due to
%% trailing CRLF in RFC 4180. This bug is expected

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

one_column_bug_test() ->
?assertEqual("\r\n\r\n", bday_csv:encode([#{""=>""},#{""=>""}])),
?assertEqual([#{"" => ""}], bday_csv:decode("\r\n\r\n")).

Elixir code/ResponsibleTesting/elixir/bday/test/csv_test.exs

Unit Tests
test "one column CSV files are inherently ambiguous" do

assert "\r\n\r\n" == Csv.encode([%{"" => ""}, %{"" => ""}])
assert [%{"" => ""}] == Csv.decode("\r\n\r\n")

end

The Erlang suite can be run with rebar3 eunit as well as rebar3 proper. Using prop_
as a prefix to both the module and properties lets the proper plugin detect what
it needs. For EUnit, the _test suffix for functions lets it do the proper detection.
If you also wanted to use the common test framework in Erlang, the _SUITE
suffix should be added to the module.

There is a last gotcha implicit to the implementation of our CSV parser: since
it uses maps, duplicate column names are not tolerated. Since our CSV files
have to be used to represent a database, it is probably a fine assumption to
make about the data set that column names are all unique. All in all, we’re
probably good ignoring duplicate columns and single-column CSV files since
it’s unlikely database tables would be that way either, but it’s not fully CSV-
compliant. This gotcha was discovered by adding good old samples from the
RFC into the EUnit test suite:

Erlang code/ResponsibleTesting/erlang/bday/test/prop_csv.erl

rfc_record_per_line_test() ->
?assertEqual([#{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("aaa,bbb,ccc\r\nzzz,yyy,xxx\r\n")).

rfc_optional_trailing_crlf_test() ->
?assertEqual([#{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("aaa,bbb,ccc\r\nzzz,yyy,xxx")).

rfc_double_quote_test() ->
?assertEqual([#{"aaa" => "zzz", "bbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("\"aaa\",\"bbb\",\"ccc\"\r\nzzz,yyy,xxx")).

rfc_crlf_escape_test() ->
?assertEqual([#{"aaa" => "zzz", "b\r\nbb" => "yyy", "ccc" => "xxx"}],

bday_csv:decode("\"aaa\",\"b\r\nbb\",\"ccc\"\r\nzzz,yyy,xxx")).

rfc_double_quote_escape_test() ->
%% Since we decided headers are mandatory, this test adds a line
%% with empty values (CLRF,,) to the example from the RFC.
?assertEqual([#{"aaa" => "", "b\"bb" => "", "ccc" => ""}],

bday_csv:decode("\"aaa\",\"b\"\"bb\",\"ccc\"\r\n,,")).

• Click HERE to purchase this book now. discuss

CSV Parsing • 15

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

%% @doc this counterexample is taken literally from the RFC and cannot
%% work with the current implementation because maps have no dupe keys
dupe_keys_unsupported_test() ->

CSV = "field_name,field_name,field_name\r\n"
"aaa,bbb,ccc\r\n"
"zzz,yyy,xxx\r\n",

[Map1,Map2] = bday_csv:decode(CSV),
?assertEqual(1, length(maps:keys(Map1))),
?assertEqual(1, length(maps:keys(Map2))),
?assertMatch(#{"field_name" := _}, Map1),
?assertMatch(#{"field_name" := _}, Map2).

Elixir translation on page ?.

The last test was impossible to cover with the current property implementation,
so doing it by hand in an example case still proved worthwhile. In the end,
ignoring comments and blank lines, twenty-seven lines of example tests let
us find one gotcha about our code and validate specific cases against the
RFC, and nineteen lines of property-based tests that let us exercise our code
to the point we found inconsistencies in the RFC itself (which is not too rep-
resentative of the real world).6 That’s impressive.

All in all, this combination of example-based unit tests and properties is a
good match. The properties can find very obtuse problems that require complex
searches into the problem space, both in breadth and in depth. On the other
hand, they can be written in a way that they’re general enough that some
basic details could be overlooked. In this case, the property exercised encoding
and decoding exceedingly well, but didn’t do it infallibly—we programmers
are good at making mistakes no matter the situation, and example tests could
also catch some things. They’re great when acting as anchors, an additional
safety net making sure our properties are not drifting away on their own.

Another similar good use of unit tests are to store regressions, specific tricky
bugs that need to be explicitly called out or validated frequently. PropEr with
Erlang and Elixir both contain options to store and track regressions auto-
matically if you want them to. Otherwise, example tests are as good of a place
as any to store that information.

With the CSV handling in place, we can now focus on filtering employee records.

6. http://tburette.github.io/blog/2014/05/25/so-you-want-to-write-your-own-CSV-code/

• 16

• Click HERE to purchase this book now. discuss

http://tburette.github.io/blog/2014/05/25/so-you-want-to-write-your-own-CSV-code/
http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

