
Extracted from:

Property-Based Testing with
PropEr, Erlang, and Elixir

Find Bugs Before Your Users Do

This PDF file contains pages extracted from Property-Based Testing with PropEr,
Erlang, and Elixir, published by the Pragmatic Bookshelf. For more information

or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Property-Based Testing with
PropEr, Erlang, and Elixir

Find Bugs Before Your Users Do

Fred Hebert

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-621-1
Book version: P1.0—January 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 3

Thinking in Properties
In the last chapter, we went over basic properties, including their syntax and
generators that are available out of the box. We played with the biggest(List)
function, ensuring it behaved properly. You may now have a good idea of
what a property looks like and how to read it, but chances are you don’t feel
comfortable writing your own; it can take a long time to feel like you know
how to write effective properties. All things considered, a big part of being
good at coming up with properties is a question of experience: do it over and
over again and keep trying your hand at it until it feels natural. That would
usually take a long time, but we’re going to try to speed things up.

Writing good properties is challenging and requires more effort than standard
tests, but this chapter should provide some help. We’re going to go through
techniques that make the transition from using standard tests to thinking in
properties feel natural. You’ll become more efficient at progressing from having
vague ideas of what your program should do to knowing how it should behave
through well-defined properties.

We’ll go over a few tips and tricks to help us figure out how to write decent
enough properties in tricky situations. First, we’ll try modeling our code, so we
can skip over a lot of the challenging thinking that would otherwise be required.
When that doesn’t work, we’ll try generalizing properties out of traditional
example-based cases, which will help us determine the rules underpinning our
expectations. Another approach we’ll use is finding invariants so that we can
ratchet up from trivial properties into a solid test suite. Finally, we’ll implement
symmetric properties as a kind of easy cheat code for some specific problems.

Modeling
Modeling essentially requires you to write an indirect and very simple imple-
mentation of your code—often an algorithmically inefficient one—and pit it

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

against the real implementation. The model should be so simple that it is
obviously correct. You can then optimize the real system as much as you
want: as long as both implementations behave the same way, there’s a good
chance that the complex one is as good as the obviously correct one, but
faster. So for code that does a conceptually simple thing, modeling is useful.

Let’s revisit the biggest/1 function from last chapter and put it in its own module:

About the Code

In the snippets that follow, code is labeled with both the language
(Erlang and Elixir) and the file where you should put the code if
you’re following along.

Erlang code/ThinkingInProperties/erlang/pbt/src/thinking.erl

-module(thinking).
-export([biggest/1]).

biggest([Head | Tail]) ->
biggest(Tail, Head).

biggest([], Biggest) ->
Biggest;

biggest([Head|Tail], Biggest) when Head >= Biggest ->
biggest(Tail, Head);

biggest([Head|Tail], Biggest) when Head < Biggest ->
biggest(Tail, Biggest).

Elixir code/ThinkingInProperties/elixir/pbt/lib/pbt.ex

defmodule Pbt do
def biggest([head | tail]) do

biggest(tail, head)
end

defp biggest([], max) do
max

end

defp biggest([head | tail], max) when head >= max do
biggest(tail, head)

end

defp biggest([head | tail], max) when head < max do
biggest(tail, max)

end

end

The function iterates over the list in a single pass: the largest value seen is
held in memory and replaced any time a larger one is spotted. Once the list

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

has been fully scanned, the largest value seen so far is also the largest value
of the list. That value is returned, and everything is fine.

The challenge is coming up with a good property for it. The obvious rule to
encode is that the function should return the biggest number of the list passed
in. The problem with this obvious rule is that it’s hard to encode: the biggest/1
function is so simple and such a direct implementation of the rule that it’s
hard to make a property that is not going to be a copy of the function itself.
Doing so would not be valuable, because we’re likely to repeat the same mis-
takes in both places, so we might as well not test it.

In these cases, modeling is a good idea. So for this function, we need to come
up with an alternative implementation that we can trust to be correct to make
the property work. Here’s the property for this case:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

-module(prop_thinking).
-include_lib("proper/include/proper.hrl").

%%%%%%%%%%%%%%%%%%
%%% Properties %%%
%%%%%%%%%%%%%%%%%%

prop_biggest() ->
?FORALL(List, non_empty(list(integer())),

begin
thinking:biggest(List) =:= model_biggest(List)

end).

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "finds biggest element" do
forall x <- non_empty(list(integer())) do

Pbt.biggest(x) == model_biggest(x)
end

end

Most modeling approaches will look like that one. The crucial part is the
model, represented by model_biggest/1. To implement the model, we can pick
standard library functions to give us our alternative, slower, but so-simple-
it-must-be-correct implementation:

Erlang

model_biggest(List) ->
lists:last(lists:sort(List)).

• Click HERE to purchase this book now. discuss

Modeling • 7

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

Elixir

def model_biggest(list) do
List.last(Enum.sort(list))

end

Since sorting a list orders all its elements from the smallest one to the largest
one possible, picking the last element of the list should logically give us the
biggest list entry. Running the property shows that it is good enough:

$ rebar3 proper -p prop_biggest
===> Verifying dependencies...
===> Compiling pbt
===> Testing prop_thinking:prop_biggest()
...
.................................
OK: Passed 100 test(s).
===>
1/1 properties passed

Chances are pretty much null that all the functions involved are buggy enough
that we can’t trust our test to be useful and it only passes by accident. In
fact, as a general rule when modeling, we can assume that our code imple-
mentation is going to be as reliable as the model to which we compare it.
That’s why you should always aim to have models so simple they are obviously
correct. In the case of biggest/1, it’s now as trustworthy as lists:sort/1 and lists:last/1.

Modeling is also useful for integration tests of stateful systems with lots of
side effects or dependencies, where “how the system does something” is
complex, but “what the user perceives” is simple. Real-world libraries or sys-
tems often hide such complexities from the user to appear useful at all.
Databases, for example, can do a lot of fancy operations to maintain transac-
tional semantics, avoid loss of data, and keep good performance, but a lot of
these operations can be modeled with simple in-memory data structures
accessed sequentially.

Finally, there’s a rare but great type of modeling that may be available, called
the oracle. An oracle is a reference implementation, possibly coming from a
different language or software package, that can therefore act as a prewritten
model. The only thing required to test the system is to compare your imple-
mentation with the oracle and ensure they behave the same way.

If you can find a way to model your program, you can get pretty reliable tests
that are easy to understand. You have to be careful about performance—if
your so-simple-it-is-correct implementation is dead slow, so will your tests
be—but models are often a good way to get started.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

Generalizing Example Tests
Modeling tends to work well, as long as it is possible to write the same program
multiple times, and as long as one of the implementations is so simple it is
obviously correct. This is not always practical, and sometimes not possible.
We need to find better properties. That’s significantly harder than finding any
property, which can already prove difficult and requires a solid understanding
of the problem space. A good trick to find a property is to just start by writing
a regular unit test and then abstract it away. We can take the steps that are
common to coming up with all individual examples and replace them with
generators.

In the previous section, we said that biggest/1 is as reliable as lists:sort/1 and
lists:last/1, the two functions we used to model it in its property. Our model’s
correctness entirely depends on these two functions doing the right thing. To
make sure they’re well-behaved, we’ll write some tests demonstrating they
work as expected. Let’s see how we can write a property for lists:last/1. This
function is so simple that we can consider it to be axiomatic—just assume
it’s correct—and a fundamental block of the system. For this kind of function,
traditional unit tests are usually a good fit since it’s easy to come up with
examples that should be significant. We can also transform examples into a
property. After all, if we can get a property to do the work for us, we’ll have
thousands of examples instead of the few we’d come up with, and that’s
objectively better coverage.

Let’s take a look at what example tests could look like for lists:last/1, so that
we can generalize them into a property:

last_test() ->
?assert(-23 =:= lists:last([-23])),
?assert(5 =:= lists:last([1,2,3,4,5])),
?assert(3 =:= lists:last([5,4,3])).

We can write this test by hand:

1. Construct a list by picking a bunch of numbers.

• Pick a first number.
• Pick a second number.
• …
• Pick a last number.

2. Take note of the last number in the list as the expected one.

3. Check that the value expected is the one obtained.

• Click HERE to purchase this book now. discuss

Generalizing Example Tests • 9

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

Since the last substep of 1. (“Pick a last number.”) is the one we really want
to focus on, we can break it from the other substeps by using some clever
generator usage. If we group all of the initial substeps in a list and isolate the
last one, we get something like {list(number()), number()}. Here it is used in a
property:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

prop_last() ->
%% pick a list and a last number
?FORALL({List, KnownLast}, {list(number()), number()},

begin
KnownList = List ++ [KnownLast], % known number appended to list
KnownLast =:= lists:last(KnownList) % known last number is found

end).

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "picks the last number" do
forall {list, known_last} <- {list(number()), number()} do

known_list = list ++ [known_last]
known_last == List.last(known_list)

end
end

And just like that, we’ll get hundreds or even millions of example cases instead
of a few unit tests all done by hand. Of course, we now have to believe the ++
operator will correctly append items to a list if we want to trust this new
property. We’re getting pulled in deeper: is it possible to make a model out of
it? Can it be turned into a simpler property, or just tested with traditional
unit tests? This is ultimately a question about which parts of the system you
just trust to be correct, and that is left for you to decide. It’s challenging to
write a lot of significant tests for very simple cases, but the next technique
can help.

Invariants
Some programs and functions are complex to describe and reason about.
They could be needing a ton of small parts to all work right for the whole to
be correct, or we may not be able to assert their quality because it is just
hard to define. For example, it’s hard to say why a meal is good, but it might
include criteria like: the ingredients are cooked adequately, the food is hot
enough, it’s not too salty, not too sweet, not too bitter, it’s well-presented, the
portion size is reasonable, and so on. Those factors are all easier to measure
objectively and can be a good proxy for “the customer will enjoy the food.” In

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

a software system, we can identify similar conditions or facts that should
always remain true. We call them invariants, and testing for them is a great
way to get around the fact that things may just be ambiguous otherwise.

If an invariant were to be false at any time, you would know something is
messed up. Seriously messed up. Here are some examples:

• A store cannot sell more items than it has in stock.

• In a binary search tree, the left child is smaller and the right child is
greater than their parent’s value.

• Once you insert a record in a database, you should be able to read it back
and not see it as missing.

A single invariant on its own is usually not enough to show a piece of code
is working as expected. But if we can come up with many invariants and
small things to validate, and if they all always remain true, we can gain a lot
more confidence in the ability of our code base to work well. Strong ropes are
built from smaller threads put together. In papers or proofs about why a given
data structure works, you’ll find that almost all aspects of its success comes
from ensuring a few invariants are respected.

For property-based testing, we can write a lot of simple properties, each rep-
resenting one invariant. As we add more and more of them, we can build a
strong test suite that overall demonstrates that our code is rock solid.

The lists:sort/1 function is a good example of a piece of code that could be
checked with invariants. How can we identify the invariants though? We could
pick the first one by saying “a sorted list has all the numbers in it ordered
from smallest to largest.” The problem is that this is such a complete and
accurate description of the whole function that if we used it as an invariant,
we’d need a complete sorting function to test it. This is circular as it boils
down to saying “a proper sort function is a function that sorts properly.” A
test that is written the same way as the code it tests is not useful.

Instead we should try to break it down into smaller parts. Something like
“each number in a sorted list is smaller than (or equal to) the one that follows.”
The difference is small, but important. In the first case, we declare the final
state of the entire list, the intended outcome. In the latter case, we mention
an invariant that should be true of any pair of elements, and not the whole
output. We can do an entirely local verification without having the whole
picture. Then, when we apply the property to every pair, we indirectly test for
a fully ordered output:

• Click HERE to purchase this book now. discuss

Invariants • 11

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

prop_sort() ->
?FORALL(List, list(term()),

is_ordered(lists:sort(List))).

is_ordered([A,B|T]) ->
A =< B andalso is_ordered([B|T]);

is_ordered(_) -> % lists with fewer than 2 elements
true.

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "a sorted list has ordered pairs" do
forall list <- list(term()) do

is_ordered(Enum.sort(list))
end

end

def is_ordered([a, b | t]) do
a <= b and is_ordered([b | t])

end

lists with fewer than 2 elements
def is_ordered(_) do

true
end

Not bad. A good side effect of this approach is that the implementation is
almost guaranteed to be different from the test: we only validated that some
property held, and didn’t transform the input at all. No modeling is involved
here. As mentioned earlier though, a single invariant isn’t very solid. If we’d
written a sort function as follows, it would always pass:

sort(_) -> [].

We need more invariants to ensure the implementation is right. We can look
for other properties that should always be true and easy to check. Here are
some examples:

• The sorted and unsorted lists should both have the same size.

• Any element in the sorted list has to have its equivalent in the unsorted
list (no element added).

• Any element in the unsorted list has to have its equivalent in the sorted
list (no element dropped).

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

Let’s see how these could be implemented:

Erlang code/ThinkingInProperties/erlang/pbt/test/prop_thinking.erl

%% @doc the sorted and unsorted list should both remain the same size
prop_same_size() ->

?FORALL(L, list(number()),
length(L) =:= length(lists:sort(L))).

%% @doc any element in the sorted list has to have its equivalent in
%% the unsorted list
prop_no_added() ->

?FORALL(L, list(number()),
begin

Sorted = lists:sort(L),
lists:all(fun(Element) -> lists:member(Element, L) end, Sorted)

end).

%% @doc any element in the unsorted list has to have its equivalent in
%% the sorted list
prop_no_removed() ->

?FORALL(L, list(number()),
begin

Sorted = lists:sort(L),
lists:all(fun(Element) -> lists:member(Element, Sorted) end, L)

end).

Elixir code/ThinkingInProperties/elixir/pbt/test/pbt_test.exs

property "a sorted list keeps its size" do
forall l <- list(number()) do

length(l) == length(Enum.sort(l))
end

end

property "no element added" do
forall l <- list(number()) do

sorted = Enum.sort(l)
Enum.all?(sorted, fn element -> element in l end)

end
end

property "no element deleted" do
forall l <- list(number()) do

sorted = Enum.sort(l)
Enum.all?(l, fn element -> element in sorted end)

end
end

• Click HERE to purchase this book now. discuss

Invariants • 13

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

That’s better. Now it’s harder to cheat your way through the properties, and
we can trust our tests:

$ rebar3 proper
«build output»
===> Testing prop_sort:prop_sort()
..
............................
OK: Passed 100 test(s).
===> Testing prop_sort:prop_same_size()
..
............................
OK: Passed 100 test(s).
===> Testing prop_sort:prop_no_added()
..
............................
OK: Passed 100 test(s).
===> Testing prop_sort:prop_no_removed()
..
............................
OK: Passed 100 test(s).
===>
4/4 properties passed

Each of these properties is pretty simple on its own, but they make a solid
suite against almost any sorting function. Another great aspect is that some
invariants are easy to think about, are usually fast to validate, and are almost
always going to be useful as a sanity check, no matter what. They will combine
well with every other testing approach you can think of.

A small gotcha here is that our tests now depend on other functions from the
lists module. This brings us back to the discussion on when to stop, since we
need to trust these other functions if we want our own tests to be trustworthy.
We could just call the shots and say we trust them, especially since they are
given to us by the language designers. It’s a calculated risk. But there’s
another interesting approach we could use by testing them all at once.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fhproper
http://forums.pragprog.com/forums/fhproper

