
Extracted from:

Modern Asynchronous JavaScript
Tackle Complex Async Tasks with Less Code

This PDF file contains pages extracted from Modern Asynchronous JavaScript,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Asynchronous JavaScript
Tackle Complex Async Tasks with Less Code

Faraz K. Kelhini

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-904-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2, 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Making a User-Cancelable Async Request
When including large files on your page, you should take into account the
fact that some users will be on limited bandwidth or mobile devices with
expensive data plans. Therefore, the ability for a user to load and cancel
loading large items is valuable.

Say you need to load a very large photo (in this case, 22 MB in size) from
Wikipedia. You want to define a button that fetches the photo and another
button that aborts the loading. Here’s how the program will look:

You can see a live example of this program here:

https://eloux.com/async_js/examples/abort_ex08_complete.html

First, define an HTML <image> element on the page. The src attribute of this
element will be filled once the image is loaded. We also need an element to
inform the user about the outcome, so define a element with a class
of result. Next, create the buttons. We’re going to disable the abort button until
the load button is clicked, so give it a disabled attribute:

abort/abort_ex08.html
<!doctype html>
<html lang="en-us">

<head>
<meta charset="utf-8">
<title>Making a User Cancelable Async Request</title>
<meta name="viewport" content="width=device-width, initial-scale=1">

• Click HERE to purchase this book now. discuss

https://eloux.com/async_js/examples/abort_ex08_complete.html
http://media.pragprog.com/titles/fkajs/code/abort/abort_ex08.html
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

<script src="abort_ex08.js" defer></script>
</head>

<body>
<image class="image">

<button class="loadBtn">Load Photo</button>
<button class="abortBtn" disabled="disabled">Cancel Loading</button>

</body>

</html>

Now, in the JavaScript file, we need to set up two functions: one to call when
the Load Photo button is clicked and the other to call when the Cancel
Loading button is clicked:

abort/abort_ex08.js
// create a reference to each HTML elementLine 1

const loadBtn = document.querySelector('.loadBtn');-

const abortBtn = document.querySelector('.abortBtn');-

const image = document.querySelector('.image');-

const result = document.querySelector('.result');5

-

const controller = new AbortController();-

-

// abort the request-

abortBtn.addEventListener('click', () => controller.abort());10

-

// load the image-

loadBtn.addEventListener('click', async () => {-

loadBtn.disabled = true;-

abortBtn.disabled = false;15

-

result.textContent = 'Loading...';-

-

try {-

const response = await fetch(`https://upload.wikimedia.org/wikipedia/com20

mons/a/a3/Kayakistas_en_Glaciar_Grey.jpg`, {signal: controller.signal});-

const blob = await response.blob();-

image.src = URL.createObjectURL(blob);-

-

// remove the "Loading.." text25

result.textContent = '';-

}-

catch (err) {-

if (err.name === 'AbortError') {-

result.textContent = 'Request successfully canceled';30

} else {-

result.textContent = 'An error occurred!'-

console.error(err);-

}-

}35

-

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkajs/code/abort/abort_ex08.js
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

loadBtn.disabled = false;-

abortBtn.disabled = true;-

});-

Notice how line 13 of the code registers an async function to be called when
the Load Photo button is clicked. Within the function, we disable the Load
button to prevent another click and enable the Cancel Loading button. Next
we attempt to retrieve the image using the standard fetch() function.

To be able to display the image we’ve retrieved, we need to convert it into an
object URL. First use the Blob() constructor to get a Blob object (line 22). Now
you can create a URL that refers to the Blob by passing the object into the
URL.createObjectURL() method (line 23). All that’s left to do to display the image
is insert the resulting data into the src attribute of the image tag. At the end
of the code, we revert the buttons to their original state.

What’s a Blob?

Blob stands for binary large object, which is a data type containing
a collection of binary data. In JavaScript, Blob serves as an
essential data interchange method for several APIs. They’re often
used when working with data that isn’t in a JavaScript-native
format, such as images, audio, or other multimedia objects.

Now, what if we need to fetch multiple images and want to let the user abort
them all at the same time?

• Click HERE to purchase this book now. discuss

Making a User-Cancelable Async Request • 7

http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

