
Extracted from:

Modern Asynchronous JavaScript
Tackle Complex Async Tasks with Less Code

This PDF file contains pages extracted from Modern Asynchronous JavaScript,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Asynchronous JavaScript
Tackle Complex Async Tasks with Less Code

Faraz K. Kelhini

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-904-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2, 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Using a Generator to Define a Custom Iterator
Generator functions enhance the process of defining the iterable protocol by
providing an iterative algorithm. When called, a generator function doesn’t
execute its body immediately. Instead, it returns a special type of iterator
known as a generator object, as shown in the following image.

We can run the generator function’s body by calling its next() method. The yield
keyword pauses the generator and specifies the value to be returned. With
that in mind, let’s adapt the example in Creating a Custom Iterator, on page
?. The result of this code is identical, but it’s much easier to implement.

Notice the asterisk following the function keyword at line 5. This is our generator
function and defines a custom iterator for collection:

generators/gen_ex01.js
const collection = {Line 1

a: 10,-

b: 20,-

c: 30,-

[Symbol.iterator]: function*() {5

for (let key in this) {-

yield this[key];-

}-

}-

};10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex01.js
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

-

const iterator = collection[Symbol.iterator]();-

-

console.log(iterator.next()); // ⇒ {value: 10, done: false}-

console.log(iterator.next()); // ⇒ {value: 20, done: false}15

console.log(iterator.next()); // ⇒ {value: 30, done: false}-

console.log(iterator.next()); // ⇒ {value: undefined, done: true}-

We’ve used a for...in loop inside the generator to iterate over the object’s prop-
erties. With each iteration, the yield keyword halts the loop’s execution and
returns the value of the succeeding property to the caller.

It’s possible to call a generator function as many times as needed, and each
time it returns a new generator object. But a generator object can be iterated
only once. Since the object returned by a generator is always an iterator, we
can use the for...of syntax to iterate over the result as well.

Now that we know how synchronous generators work, we’re ready to look at
its asynchronous counterpart.

Creating an Asynchronous Generator
An async generator is similar to a sync generator in that calling next() resumes
the execution of the generator until reaching the yield keyword. But rather
than returning a plain object, next() returns a promise.

You can think of an async generator as a combination of an async function
and a generator function. Let’s rewrite the example from Retrieving URLs
Separately, on page ?, using a generator function. Notice the async keyword
and the asterisk symbol (*) at line 7 indicating an asynchronous generator
function:

generators/gen_ex02.js
const srcArr = [Line 1

'https://eloux.com/async_js/examples/1.json',-

'https://eloux.com/async_js/examples/2.json',-

'https://eloux.com/async_js/examples/3.json',-

];5

-

srcArr[Symbol.asyncIterator] = async function*() {-

let i = 0;-

for (const url of this) {-

const response = await fetch(url);10

if (!response.ok) {-

throw new Error('Unable to retrieve URL: ' + response.status);-

}-

yield response.json();-

}15

};-

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex02.js
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

-

const iterator = srcArr[Symbol.asyncIterator]();-

-

iterator.next().then(result => {20

console.log(result.value.firstName); // ⇒ John-

});-

-

iterator.next().then(result => {-

console.log(result.value.firstName); // ⇒ Peter25

});-

-

iterator.next().then(result => {-

console.log(result.value.firstName); // ⇒ Anna-

});30

Within this generator, we’ve used the await keyword to wait for the fetch
operation to complete. As with non-async generator functions, yield returns
the result to the function’s caller. Notice how this asynchronous generator
simplifies the process of defining the asynchronous iterable protocol. It’s not
only easier to write but also less error-prone.

In production, you’ll also want to use catch() to handle errors and rejected
cases during the iteration. A well-designed program should be able to recover
from common errors without terminating the application. You can chain a
catch() method the same way as its sister method then(). For example:

iterator.next()
.then(result => {

console.log(result.value.firstName);
})
.catch(error => {

console.error('Caught: ' + error.message);
});

If an error occurs, catch() will be executed with the rejection reason passed as
its argument. Now let’s look at a more complex example of an async generator.

Iterating over Paginated Data
One situation we want to use asynchronous iteration over synchronous is
when working with web APIs that provide paginated data. By using an asyn-
chronous iterator, we can seamlessly make multiple network requests and
iterate over the results. For example, GitHub provides an API that allows us
to retrieve commits for a repository. The response is in JSON format and
contains the data for the last 30 commits of the repository. The API will also
provide pagination link headers for the remaining commits.

• Click HERE to purchase this book now. discuss

Iterating over Paginated Data • 7

http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

Say we want to retrieve info for the last 90 commits of a particular GitHub
repository. We can achieve that using an asynchronous iterator or, better yet,
a generator. Let’s create an asynchronous generator and program it to handle
the pagination:

generators/gen_ex03.js
// create an async generator functionLine 1

async function* generator(repo) {-

-

// create an infinite loop-

for (;;) {5

-

// fetch the repo-

const response = await fetch(repo);-

-

// parse the body text as JSON10

const data = await response.json();-

-

// yield the info of each commit-

for (let commit of data) {-

yield commit;15

}-

-

// extract the URL of the next page from the headers-

const link = response.headers.get('Link');-

repo = /<(.*?)>; rel="next"/.exec(link)?. [1];20

-

// if there's no "next page", break the loop.-

if (repo === undefined) {-

break;-

}25

}-

}-

-

async function getCommits(repo) {-

30

// set a counter-

let i = 0;-

-

for await (const commit of generator(repo)) {-

35

// process the commit-

console.log(commit);-

-

// break at 90 commits-

if (++i === 90) {40

break;-

}-

}-

}-

45

getCommits('https://api.github.com/repos/tc39/proposal-temporal/commits');-

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkajs/code/generators/gen_ex03.js
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

Here, we’ve created two async functions, one of which is a generator. The
generator function is responsible for retrieving the resource, parsing it as
JSON, and sending the info of each commit to the generator’s caller.

In order to fetch the last 90 commits, not just 30, we put these tasks in a
loop within the generator. And each time through the loop, we fetch the next
batch of commits. The expression response.headers.get('Link') at line 19 extracts
the URL of the next page from the headers and assigns it to the repo variable
so that we can access the new URL in the next loop.

If there’s no “next page” in the headers, that means there are no more commits
to fetch, so we break the loop (line 24).

Within the getCommits() function, we define a counter variable to keep track of
the number of fetched commits. When the number reaches 90, we stop calling
the generator (line 40). The takeaway from this example is that asynchronous
generators allow us to smoothly and continuously make several network
requests and iterate over the results.

Another interesting use case for asynchronous generator would be fetching
images from a photo sharing website like Flickr. The Flickr API provides an
endpoint for fetching images based on given keywords.3 Say you want to create
a program that retrieves and processes photos taken in London. Since there
are millions of photos of London on Flickr, the API cannot return them all at
once. Instead, it returns photos in batches of 100. With an async generator
function, you can fetch and navigate the batches asynchronously. Using an
async generator would also open up the possibility to seamlessly aggregate
photos from several sources.

Wrapping Up
Generators enhance the process of creating iterables by providing an iterative
algorithm. An async generator is similar to a sync generator except that it
returns a promise rather than a plain object. Use a generator function when
you don’t want to manipulate the state-maintaining behavior of the object.

Armed with the foundation of asynchronous iterators and generators, you
can now make more powerful asynchronous programs. Up next, you’ll get
the result of multiple promises that are not dependent on each other by using
the ES2020 Promise.allSettled() method.

3. https://www.flickr.com/services/api/flickr.photos.search.htm

• Click HERE to purchase this book now. discuss

Wrapping Up • 9

https://www.flickr.com/services/api/flickr.photos.search.htm
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

