Extracted from:

Modern Asynchronous JavaScript
Tackle Complex Async Tasks with Less Code

This PDF file contains pages extracted from Modern Asynchronous JavaScript,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Thy
ograminers

Modern
Asynchronous
JavaScript

Tackle Complex
Async Tasks
with Less Code

Faraz K. Kelhini
edited by Margaret

Modern Asynchronous JavaScript
Tackle Complex Async Tasks with Less Code

Faraz K. Kelhini

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-904-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2, 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Using Promise.allSettled() to Fetch Multiple Resources

The Promise.allSettled() method returns a pending promise that resolves when
all of the given promises have either successfully fulfilled or rejected (“settled,”
in other words). This behavior is very useful to track multiple asynchronous
tasks that are not dependent on one another to complete.

The following image shows how the Promise.allSettled() method resolves a pending
promise:

revable = [promisel, promise2, promise3)

\2

Promise.allsetHed(iterable)
Pending
[| promise I
All promises Two promises All promises
futfiled rejected, one fulfilled vejected.
futfilled futfilled fulfilled

In the following example, we attempt to fetch three resources, one of which
doesn’t exist. Notice how Promise.allSettled() reports the result of every promise:

promise.allSettled/tracking_promises_ex04.js

const promises = [
fetch('https://picsum.photos/200', {mode: "no-cors"}),
fetch('https://does-not-exist', {mode: "no-cors"}),
fetch('https://picsum.photos/100/200', {mode: "no-cors"})

1;

Promise.allSettled(promises).
then((results) => results.forEach((result) => console.log(result)));

// logs:

// => { status: "fulfilled", value: Response }
// => { status: "rejected", reason: TypeError }
// => { status: "fulfilled", value: Response }

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex04.js
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

°6

Rather than immediately rejecting when one of the promises fails,
Promise.allSettled() waits until they all have completed.

Notice how the result of all promises is passed as an array to then() and how
they are in the same order as the iterable that was given even though they
settled out of order. The outcome of each promise has a status property, indi-
cating whether the promise has fulfilled. When a promise is rejected, the
result won't have a value property. Instead, it has a reason property containing
the rejection reason.

Keep in mind that the promise returned by Promise.allSettled() will almost always
be fulfilled. The promise will reject if and only if we pass a value that’s not
iterable, such as a plain object.

Let’s look at the rewritten version of this code, this time with the Promise.all()
method:

promise.allSettled/tracking_promises_ex05.js

const promises = [
fetch('https://picsum.photos/200', {mode: "no-cors"}),
fetch('https://does-not-exist', {mode: "no-cors"}),
fetch('https://picsum.photos/100/200', {mode: "no-cors"})

1;

Promise.all(promises).

then((results) => results.forEach((result) => console.log(result)));

// logs:
// => Uncaught (in promise) TypeError: Failed to fetch

This time, the promise rejects immediately upon the second input promise
rejecting. One important difference between these two methods is that
Promise.allSettled() has an extra property that Promise.all() doesn’t: status. In fact,
Promise.all() returns the raw value that Promise.allSettled() tucks into its resulting
object. Compare:

promise.allSettled/tracking_promises_ex06.js

const promises = [
Promise.resolve(1),
Promise.resolve(2)

1;

Promise.allSettled(promises).

then((results) => results.forEach((result) => console.log(result)));

// logs:
// => { status: "fulfilled", value: 1 }
// => { status: "fulfilled", value: 2 }

Promise.all(promises).
then((results) => results.forEach((result) => console.log(result)));

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex05.js
http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex06.js
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

Wrapping Up ¢ 7

// logs:
// =1
/] =>2

Notice how Promise.all() directly returns the response. If you're in an old Java-
Script environment that doesn’t support Promise.allSettled() or if you'd like to
directly return the promises, there’s a simple workaround for you. Consider
the following code:

promise.allSettled/tracking_promises_ex07.js

const promises = [
fetch('https://picsum.photos/200', {mode: "no-cors"}),
fetch('https://does-not-exist', {mode: "no-cors"}),
fetch('https://picsum.photos/100/200', {mode: "no-cors"})

]1.map(p => p.catch(e => e));

Promise.all(promises).
then((results) => results.forEach((result) => console.log(result)));

Here, we've applied the map() method to an iterable of promises. Within the
method, we use catch() to return promises that resolve with an error value.
This way, we can simulate the behavior of Promise.allSettled() while being able
to directly access the result of promises.

Often, we use Promise.all() and Promise.allSettled() with similar types of requests,
but there’s no written rule that we should. You may find yourself in a situation
where you need to read a local file, retrieve a JSON document from a web
API, and load an XML document from another API. Once you obtain data from
all three async requests, you want to process them. Promise.all() and
Promise.allSettled() are ideal for such scenarios.

Keep in mind that you will want to use these methods only when you need
to process the result of multiple async requests together. If it’s possible to
process the result of each async request individually, then handle each
promise with its own then() handler. This way, you can execute your code as
soon as each promise is resolved.

Wrapping Up

In this chapter, we looked at potential pitfalls when executing multiple
promises at the same time. We learned why looping over asynchronous tasks
could be a bad idea because it will cause the promises to run sequentially.
Then we learned about the Promise.allSettled() method and compared it to
Promise.all().

While Promise.all() is very strict in its execution policy, Promise.allSettled() is forgiv-
ing. That doesn’t mean Promise.allSettled() is superior to Promise.all(): they comple-

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkajs/code/promise.allSettled/tracking_promises_ex07.js
http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

°8

ment each other. Using Promise.all() is more appropriate when you have essential
async tasks that are dependent on each other. On the other hand,
Promise.allSettled() is more suitable for async tasks that might fail but are not
essential for your program to function.

As of ES2021, the ECMAScript standard includes one more method for the
promise object: Promise.any(). This method is the opposite of Promise.all(). In the
next chapter, we're going to learn how Promise.any() can help you when you
need to focus on the promise that resolves first.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fkajs
http://forums.pragprog.com/forums/fkajs

