Thy
Pr: emaﬁc
OgraInmers

Text Processing
with JavaScript

Regular Expressions,
Tools, and Techniques for

Optimal Performance %g\&ﬂ\“‘ \;,’ :

-
e

&S(RBQ%&&@ e
S
RN

N\
\\29““““%

S\X‘\‘\%“Q‘\m o

Q’(\“‘Q‘“ S \d‘

NS
\\3\@? K\B\Q\“’é\ N %\3

s

\W{l\ o AeS R

WS Faraz K. Kelhini
Edited by Margaret Eldridge

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Generating Indices for Matches with the d Flag

Task

Suppose you're building a tool that helps detect errors and potential problems
in JavaScript code. You need your tool to be able to detect the use of reserved
words in variables and functions and warn the user.

Ideally, you want to program your tool to pinpoint the exact part of the code
where the reserved word is misused rather than outputting just a line number.
So, if the code has a variable assignment with a reserved word like this:

let default = 7;
You want to indicate the error like this:

let default = 7;
IEEEEEE Invalid variable name

To achieve this task, you need a regex that provides the start and end indices
of the match.

Solution

Send the supplied code one line at a time to a function that looks for an invalid
variable/function name. Use the d flag to obtain the start and end indices of
the name:

part_2/flag_indices/indices_ex1.js

// The js code you want to check.

// In production, you'll likely use the FileReader API
// or a textarea to grab the code.

const code = °
let a = 123;
let b = 456;

let default = 7;
// A short list of js reserved words.
// A full list is available here:
// https://mzl.1la/3XG92D0
const reserved = ["class", "default", "this", "case", "if"l;

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_indices/indices_ex1.js
http://pragprog.com/titles/fkjavascript
http://forums.pragprog.com/forums/fkjavascript

o4

// Build a regex pattern with the reserved words

const re = new RegExp((?:var|let|const|function)\\s+(${reserved.join("|")})",
Ildll):

// Find and display the location of the reserved word

function locateReservedWord(line) {
const match = line.match(re);

// If no match is found, return
if (match === null) {return;}

// Assign the start and end indices using the destructuring assignment.
// indices[0] holds the indices of the matched string.

// indices[1] holds the indices of the first capturing group.

const [start, end] = match.indices[1];

// Build the error message
const error =
" ".repeat(start) + // Add spaces before the arrow
wpn oy
"-".repeat(end - start - 1) +
" Invalid name (reserved word)";

console.log(line);
console.log(error);

}

// Split the code into separate lines,

// then send each line to locateReservedWord()

code.split(/\n|\r|\r\in/).forEach(line => {
locateReservedWord(line);

1)

// Logs:

// — let default = 7;

// = feeem-- Invalid name (reserved word)

Your code can now indicate the exact position of a reserved word in a variable
or function name.

Browser Compatibility

Despite being a newcomer to the regex family, the d Flag is sup-
ported by all modern browsers.' In the Node environment, you'll
need a minimum version of 16.0.0 (Released 2021-04-20). To
support older browsers, you can use a polyfill available in the
regexp-match-indices package on NPM.>

1. https://mzl.la/3u78Y6w

2. https://www.npmjs.com/package/regexp-match-indices

« Click HERE to purchase this book now. discuss

https://mzl.la/3u78Y6w
https://www.npmjs.com/package/regexp-match-indices
http://pragprog.com/titles/fkjavascript
http://forums.pragprog.com/forums/fkjavascript

Generating Indices for Matches with the d Flag ¢ 5

Discussion

The hasIndices flag (d) indicates that the matching result should provide
additional information about the start and end positions of each matched
substring. The information will be stored in a property named indices. Consider
this example:

part_2/flag_indices/indices_ex2.js
const str = "wordl word2";
const re = /word/dg;

console.log(re.exec(str).indices[0]); // —> [0, 4]
console.log(re.exec(str).indices[0]); // = [6, 10]

When we set the d flag in a regex, an indices property will be available in the
result of exec(), match(), and matchAll(). Here, we're using the exec() method, which
is similar to match() except that it provides indices in the global mode too (see
Appendix 2, Implementing Regex in JavaScript, on page ?).

The regex in this recipe requires using the RegExp() constructor because we're
constructing the pattern dynamically with an array of reserved words. Any
backslash in RegExp() must be escaped with another backslash. So, we write
the shorthand character class to match whitespaces in the form of \\s rather
than \s. Remember, if your dynamically created list contains a backslash, you
must escape it too.

Also, pay attention to the second parameter of RegExp(). The RegExp() constructor
uses a different approach to set the flags: it takes an optional second
parameter containing the letters of the flags to set. Here, we want to set the
hasIndices flag, so we pass d. As with the first argument, the second argument
must be a string. Do not wrap it in slashes.

Let’s analyze the regex in more detail:

(?:var|let|const|function)\\s+(${reserved.join("[")})

® (?:var|let|const|function) non-capturing group
O 1st alternative: matches the characters "var" literally
O 2nd alternative: matches the characters "let" literally
O 3rd alternative: matches the characters "const" literally
O 4th alternative: matches the characters "function" literally
® \\s matches any whitespace character
O + matches the previous token between one and unlimited times
® (${reserved.join("|")}) 1st Capturing Group
O ${reserved.join("|")} retrieves the array of reserved words and joins its
items with a vertical bar, resulting in class|default|this|case|if
® Flags
O d provides information about the start and end indices

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fkjavascript/code/part_2/flag_indices/indices_ex2.js
http://pragprog.com/titles/fkjavascript
http://forums.pragprog.com/forums/fkjavascript

°6

Take advantage of the hasIndices flag to obtain information about the start
and end positions of matches. Remember, when using the RegExp() constructor,
you can’t append flags to the regex pattern the way you typically do with regex
literals. Instead, you should pass a string containing the flags as the second
argument of the constructor.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fkjavascript
http://forums.pragprog.com/forums/fkjavascript

