
Extracted from:

Scalable Cloud Ops with Fugue
Declare, Deploy, and Automate the Cloud

This PDF file contains pages extracted from Scalable Cloud Ops with Fugue, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Scalable Cloud Ops with Fugue
Declare, Deploy, and Automate the Cloud

Josha Stella and the Fugue team

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-234-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Composing Refuge’s Core Components
In the Fugue Ink example in the first chapter, you learned that Ludwig is a
powerful, statically typed, domain-specific language that is the programming
interface to Fugue. As we write the Refuge composition, you’ll learn how to
define multiple application components using the Ludwig types. You’ll also
use the formative capabilities present in those Ludwig types to quickly and
cleanly define the network and security connections that exist between the
application components.

Keep in mind that the Refuge application, like Fugue Ink, will use AWS as
the infrastructure cloud provider. Following is a quick mapping of various
Refuge application components to specific AWS services:

• Load balancers: AWS Elastic Load Balancer (ELB)

• Web servers: Amazon Elastic Compute Cloud (EC2)

• API servers: EC2

• Firewall/network rules: AWS security groups (SGs)

• MySQL database: Amazon Relational Database Service (RDS)

• Scaling: AWS Auto Scaling groups (ASG)

We’re all used to writing services and then having their configuration for
infrastructure and communications scattered across many interfaces, such
as firewall rules, configuration files, and management interfaces. With Fugue,
the complete implementation of your service—from network connections to
shared variables to scaling and performance requirements—can be succinctly
declared in one place: the composition. Let’s start writing.

Kicking Off the Composition
In spinning up the Fugue Ink application, you’ve already installed Fugue and
Ludwig on your machine. (If you don’t have the files, just follow the instructions
in Installing Fugue and Ludwig, on page ?.) Next, create a new file. Call it
RefugeChapter3.lw and add the following one-word line at the beginning of the
composition, just as you did for FugueInk.lw in A Simple Composition, on page ?.

RefugeChapter3.lw
composition

Notice that if you click on the highlighted link for RefugeChapter3.lw in the digital
book, you’ll access the entire file for this chapter. You can also access this file

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/fugue/code/RefugeChapter3.lw
http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

from the book’s companion website.1 But build along with us, step-by-step, to
benefit from the explanations if you’d like. There isn’t much going on here right
now with a single line. We’ve simply initiated a new composition by creating
the new file and using this declaration. Including this line is crucial, however,
because it signals to the Conductor that this is a composition file and it can
be executed. A Ludwig file that does not contain this line will be viewed as a
library, which can be included in other compositions but cannot be executed
alone. We’ll use libraries in every composition, but will deep-dive into the concept
and mechanics later, in Chapter 6, Understanding Ludwig, on page ?, and
Chapter 7, Ludwig Modules and Validations, on page ?.

Importing Libraries
Let’s import some libraries to get us started. The Fugue client you installed
on your computer ships with the Fugue Standard Library and you’ll frequently
reference modules from this library. It contains three different types of mod-
ules: Fugue.Core.*, Fugue.AWS.*, and Fugue.AWS.Pattern.*.

Fugue.Core.*

The Fugue.Core.* namespace contains the lowest-level modules that interact
directly with the AWS CLI. They’re actually used in building the next two
types of modules described. They tend to have little validation, and you’ll use
these only if there is no equivalent, higher-level module available. Statements
like the following support this low-level AWS functionality; we’ll use the Vars
in our app for the time being:

import Fugue.Core.AWS.Common as AWS
import Fugue.Core.Vars as Vars

Fugue.AWS.*

The Fugue.AWS.* namespace contains a module for each AWS service. (At the
time of this writing, Fugue provides coverage for many AWS services, with an
aim to have complete coverage in the near future.) These modules allow you
to declare your infrastructure by defining fields that roughly correspond to
the AWS CLI, but they provide some additional validation and type-checking.

Let’s import modules for the AWS services that we plan on using:

import Fugue.AWS as AWS
import Fugue.AWS.EC2 as EC2
import Fugue.AWS.ELB as ELB
import Fugue.AWS.RDS as RDS

1. https://pragprog.com/book/fugue

• 6

• Click HERE to purchase this book now. discuss

https://pragprog.com/book/fugue
http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

import Fugue.AWS.AutoScaling as AutoScaling
import Fugue.AWS.IAM as IAM

Fugue.AWS.Pattern.*

The Fugue.AWS.Pattern.* namespace contains modules for common cloud archi-
tecture patterns, written by Fugue architects. Under the hood, these modules
are written using the same Fugue.AWS service modules that we just imported,
but they add a useful level of abstraction. In our application, we need to add
some network configuration to ensure the EC2 instances and the RDS
database are able to securely communicate with each other and with the
Internet, so we’ll import the Network pattern module:

import Fugue.AWS.Pattern.Network as Network

Because you have access to the underlying AWS service modules that the net-
work pattern was built with, you can build your own libraries in exactly the
same way. This is typically useful in cases where you’re declaring the same kind
of infrastructure over and over again, and it can keep your code more concise.

Defining Resources
Now that we’ve initialized our composition with a name and imported libraries,
we can start building our infrastructure. Let’s begin by defining a tag that
we’ll add to all of our AWS resources. Tags are just pieces of metadata that
you can use to help manage your infrastructure. For example, you can view
EC2 instances by tag in the AWS Management Console. (Remember, for
brevity, we’ll call it the AWS Console.) For clarity, we’ll tag every infrastructure
component of our project with this application tag:

Misc
refuge-tag: AWS.Tag {

key: "Application",
value: "Refuge"

}

As you can see, we just created a variable called refuge-tag and bound a new
tag to it. Let’s also create a refuge-region variable for the region into which we’ll
be deploying our application, since that’s a value that might be used multiple
times in our composition:

refuge-region: AWS.Us-west-2

Now we need to create the basic infrastructure required to get Refuge up and
running: a secure network, compute resources to run the Refuge application
code, and a database.

• Click HERE to purchase this book now. discuss

Composing Refuge’s Core Components • 7

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

Creating a Network

Before we create the instances that will run our application, we need to define
a secure network for them. As you know from Chapter 1, Simple Themes and
First Steps, on page ?, Virtual Private Cloud (VPC) is AWS’s answer to the
traditional data center network. Remember that VPCs are isolated networks
in AWS. You can configure your VPC’s IP address range, route tables, and
security settings.

Recall, too, from the first chapter that the Network pattern is a Fugue abstraction
that defines a VPC, subnets, an Internet gateway, and a routing table. For
simplicity’s sake, we’ll stick to a VPC with public subnets. Later we may choose
to harden our security and create some private subnets for our databases.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

Network
refuge-network: Network.public {

name: "Refuge Network",
region: refuge-region,
cidr: "10.0.0.0/16",
subnets: [

(AWS.A, "10.0.1.0/24"),
(AWS.B, "10.0.2.0/24"),

]
}

In a small, concise block of code, we’ve accomplished all of the complex net-
work configuration we need to get our application running in a secure, isolated
network. You see a simple visualization of this in the following diagram, which
corresponds to our Ludwig declarations and which is the starting point as
we grow our application’s infrastructure throughout this chapter.

Internet

VPC 10.0.0.0/16

Subnets 1 A 10.0.1.0/24 2 B 10.0.2.0/24

Creating Compute Resources

Refuge is made up of two separate applications—the web front end and the
API—so we need two distinct sets of compute resources, in this case EC2
instances. Refuge is not sure how popular its social network will be right off
the bat, so we’ll build in some basic scaling and load balancing from the start,
just in case.

• Click HERE to purchase this book now. discuss

Composing Refuge’s Core Components • 9

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

Instead of creating individual EC2 instances like you did for the Fugue Ink
application in Chapter 1, Simple Themes and First Steps, on page ?, you’ll
create an Auto Scaling group (ASG) for each of the two applications. An ASG
is a way to impart basic autoscaling behavior to a service running on AWS.
It can scale EC2 instances up or scale down (within limits) and take perfor-
mance metrics as input. It ensures that an adequate number of healthy
instances are available to serve the application. We’ll configure both ASGs to
have a minimum and a maximum of two instances, so we will have a total of
four EC2 instances running at all times.

To balance traffic between these instances, we’ll use an ELB, AWS’s virtualized
load balancer. These are used in front of a collection of EC2 instances to
balance traffic across them. Using an ELB will improve the fault tolerance of
our application by routing traffic to only healthy instances. We can add more
instances to an ELB while it’s running, so if we decide to update our compo-
sition later with higher instance limits on our ASG, the new instances can be
added to the ELB. We’ll configure two ELBs, one for each ASG. (Note that
Application Load Balancers—ALBs—are an ELB option appropriate to some
architectures; we’ll stick with the classic ELB in our example.2)

Incoming traffic from the Internet will go to the ELB, which will, in turn, route
traffic to an instance. For this to happen securely, we need to define security
groups to limit access for ELBs and EC2 instances:

ELB Security Group
refuge-elb-sg: EC2.SecurityGroup.new {

description: "Refuge loadbalancer",
ipPermissions: [

EC2.IpPermission.http(EC2.IpPermission.Target.all),
EC2.IpPermission.https(EC2.IpPermission.Target.all),

],
tags: [refuge-tag],
vpc: refuge-network.vpc

}

EC2 Security Group
refuge-ec2-sg: EC2.SecurityGroup.new {

description: "Allow http traffic from the ELB",
ipPermissions: [

EC2.IpPermission.http(EC2.IpPermission.Target.securityGroup(refuge-elb-sg)),
],
tags: [refuge-tag],
vpc: refuge-network.vpc

}

2. https://aws.amazon.com/elasticloadbalancing/

• 10

• Click HERE to purchase this book now. discuss

https://aws.amazon.com/elasticloadbalancing/
http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

The refuge-elb-sg security group allows HTTP and HTTPS traffic to flow from the
Internet to the ELB. The refuge-ec2-sg security group limits EC2 instance traffic
exclusively to HTTP traffic coming from the ELB.

Now that the security rules are taken care of, we’ll define our two ELBs:

Web App ELB
refuge-web-app-elb: ELB.LoadBalancer.new {

loadBalancerName: "refuge-web-app",
healthCheck: refuge-elb-health-check,
subnets: refuge-network.publicSubnets,
securityGroups: [refuge-elb-sg],
listeners: [refuge-http-listener],
tags: [refuge-tag]

}

API ELB
refuge-api-elb: ELB.LoadBalancer.new {

loadBalancerName: "refuge-api",
healthCheck: refuge-elb-health-check,
subnets: refuge-network.publicSubnets,
securityGroups: [refuge-elb-sg],
listeners: [refuge-http-listener],
tags: [refuge-tag]

}

ELB health check
refuge-elb-health-check: ELB.HealthCheck.tcp {

interval: 30,
timeout: 5,
unhealthyThreshold: 3,
healthyThreshold: 2,
port: 80

}

ELB HTTP listener
refuge-http-listener: ELB.Listener.new {

protocol: ELB.HTTP,
loadBalancerPort: 80,
instancePort: 80

}

Note that many Ludwig AWS modules come with a default record that contains
a default configuration for the service. Remember, defaults are applied auto-
matically if you omit an argument.

We’re only defining an HTTP listener here, so the application won’t actually
work over HTTPS. We would need to deploy an SSL server certificate to the
ELB to enable HTTPS encryption and decryption. We can add this (extremely
important) feature later in the production environment.

• Click HERE to purchase this book now. discuss

Composing Refuge’s Core Components • 11

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

The following diagram shows that the composition now includes ELBs for
each of our two ASGs and the corresponding security group for those ELBs.

Internet

ELB

App Load Balancer

refuge-elb-sg

ELB

API Load Balancer

refuge-elb-sg

http Internet
https Internet

http Internet
https Internet

VPC 10.0.0.0/16
Subnets 1 A 10.0.1.0/24 2 B 10.0.2.0/24

The security group for our EC2 instances is not detailed in this diagram, but
is logically grouped in the diagram shown on page ?.

Now we need to create our two ASGs. Each ASG has a launch configuration
that specifies details about the instances it will create, including an Amazon
Machine Image (AMI) to launch from. We’ve provided two AMIs with the Refuge
web app and API code ready to go. AMIs are region-specific, so they’ll work
only in your account in the Us-west-2 region. These particular AMIs contain
only limited Refuge functionality since it is a stubbed application for the
purpose of this example. In reality, you’d update the AMIs to new ones with
additional capabilities and more production-ready features as development
proceeds. So, at the top of the composition you create variables that will be
easy to change:

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

