
Extracted from:

Scalable Cloud Ops with Fugue
Declare, Deploy, and Automate the Cloud

This PDF file contains pages extracted from Scalable Cloud Ops with Fugue, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Scalable Cloud Ops with Fugue
Declare, Deploy, and Automate the Cloud

Josha Stella and the Fugue team

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-234-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Reducing Redundancy in Refuge ASGs and Beyond
Let’s apply more of what you’ve learned to our Refuge composition. Looking
at the code, we can see that there are many similarities between the refuge-
web-app, refuge-api, and refuge-notifiication-worker services. Namely, each is composed
of the following resources:

• AutoScalingGroup

• LaunchConfiguration

• SecurityGroup

• InstanceProfile (and associated role and policy)

A few differences aside, all of these resources are configured in pretty much
the same way. Let’s pull that common structure out to a function, both to
reduce duplication and to allow us to focus on the interesting parts of our
services, rather than the boilerplate they have in common. We’ll use an
approach similar to the loadbalancer function we wrote earlier in Tightening
Refuge Code with a Function, on page ?, but this time our resources differ
in more than just their names.

Defining a Function to Return an ASG
The first step is to identify where the services differ. One obvious difference is
that the refuge-web-app and refuge-api services are both behind a LoadBalancer, while
the refuge-notification-worker service is not. Also notice that the refuge-api and refuge-
notification-worker services specify a user-data script, while the refuge-web-app service
does not. Other differences include the AMI instances’ boot, the SSH key pair,
and the IAM policy applied to the service’s instances. We’ll need to capture each
of these differences in a function parameter, which could be done using posi-
tional arguments, but given the number of arguments, that would probably be
tough to keep straight over time. So, we’ll use named arguments.

The function header would then look like this:

fun service {
name: String,
image: String,
policyFile: String,
keyName: String,
loadBalancer: Optional<ELB.LoadBalancer>,
userData: Optional<String>

} -> AutoScaling.AutoScalingGroup:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

We defined the function to return an AutoScalingGroup, which will contain references
to the other resources required for a service. We have four required arguments:

name
image
policyFile
keyName

and two optional arguments:

loadBalancer
userData

The required arguments are pretty much what you would expect: name will be
used to generate meaningful names for the resources we create as part of our
service and image is the AMI we’ll be booting. policyFile is the path to the external
file containing the IAM policy’s JSON. We’ll be reading this file from the disk
and using it to generate an IAM.Policy, an IAM.Role, and an IAM.InstanceProfile for the
service. keyName is the name of the SSH key pair to configure on the instances.

Our first optional argument is loadBalancer, which allows us to pass in a LoadBal-
ancer to put in front of our service’s instances. We’ll also configure the service’s
SecurityGroup to allow connections from the LoadBalancer on port 80. If the service
doesn’t use a LoadBalancer, we’ll leave the SecurityGroup as is, which matches the
refuge-notification-worker configuration. Finally, we have the optional userData, which
is used to specify the user-data script to configure for instances.

This definition will allow us to define services using the following syntax:

refuge-web-app: service {
name: "refuge-web-app",
image: refuge-web-app-ami,
policyFile: "policies/EC2.json",
loadBalancer: refuge-web-app-elb,
keyName: "book-app-us-west-2"

}

refuge-notification-workers: service {
name: "refuge-notification-workers",
image: refuge-notification-worker-ami,
policyFile: "policies/worker_policy.json",
keyName: "refuge-notification-us-west-2",
userData: "#! /bin/bash

\export SQS_QUEUE=refuge-event-queue
\export SNS_TOPIC=refuge-notification-topic"
}

This is considerably shorter and more readable than the previous definitions,
which are spread over many top-level bindings.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

Implementing the Function
Now that you have an idea of what the service function will look like, let’s start
implementing it. As mentioned, we’ll be returning a single AutoScalingGroup, so
we’ll need to create local bindings for the IAM Policy, Role, InstanceProfile, Security-
Group, and LaunchConfiguration and then use those intermediate values to
assemble the final AutoScalingGroup.

Start with the IAM resources, they’re the simplest and depend only on policyFile:

let policy: IAM.Policy.new {
policyName: name ++ "-policy",
policyDocument: String.readFileUtf8(policyFile),

}
let role: IAM.Role.new {

roleName: name ++ "-role",
assumeRolePolicyDocument: IAM.Policy.AssumeRole.ec2,
rolePolicies: [policy],

}
let profile: IAM.InstanceProfile.new {

instanceProfileName: name ++ "-profile",
roles: [role],

}

Here we’ve created the policy, role, and profile local bindings. The only differ-
ence from the previous definitions is that we’re building the resource names
based on the service name (so the instance profile for refuge-web-app is named
"refuge-web-app-profile").

Next, let’s create our service’s security group. This is a little more involved,
as we need to construct the rules based on the presence of a load balancer:

let sg: EC2.SecurityGroup.new {
description: name,
vpc: refuge-network.vpc,
ipPermissions:

case loadBalancer of
| None -> []
| Optional elb ->

let elbSgs: Optional.unpack(
[],
elb.(ELB.LoadBalancer).securityGroups,

)
[
EC2.IpPermission.http(

EC2.IpPermission.Target.securityGroups(elbSgs)
)

]
}

• Click HERE to purchase this book now. discuss

Reducing Redundancy in Refuge ASGs and Beyond • 7

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

The description and vpc arguments are straightforward, but let’s dig into what’s
going on with ipPermissions. The goal is to create a security group with no rules
if our service doesn’t use a load balancer, which is accomplished by pattern-
matching on the loadBalancer argument and returning the empty list—that is,
None—if no load balancer is provided.

case loadBalancer of
| None -> []

When we provide our service with a load balancer, we need to extract its
security groups and create a rule allowing access to port 80 from the load bal-
ancer’s security groups. To do that, we first have to unpack the underlying
ELB.LoadBalancer from the Optional value using pattern matching. Once we have
an ELB.LoadBalancer, we can extract the security groups:

elb.(ELB.LoadBalancer).securityGroups

ELB.LoadBalancer’s securityGroups field is of type Optional<List<EC2.SecurityGroup>>, which
means we’ll need to unpack the list from an Optional. We need to provide a default
value of [] since we’re expecting a List<EC2.SecurityGroup>:

let elbSgs: Optional.unpack(
[],
elb.(ELB.LoadBalancer).securityGroups

)

We now have a List<EC2.SecurityGroup>, which we can use with the EC2.IpPermis-
sion.Target.securityGroup function to create a single rule that allows access from
the security groups in the list:

[
EC2.IpPermission.http(

EC2.IpPermission.Target.securityGroups(elbSgs)
)

]

The rule is wrapped in a list and passed to EC2.SecurityGroup.new as the ipPermissions
argument, giving us our security group.

Next up is combining the previously created values into a LaunchConfiguration:

let lc: AutoScaling.LaunchConfiguration.new {
image: image,
securityGroups: [sg],
instanceType: EC2.T2_micro,
associatePublicIpAddress: if Optional.isNone(loadBalancer)

then False
else True,

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

iamInstanceProfile: profile,
keyName: keyName,
userData: userData,

}

We want to give our service instances public IP addresses only if they’re
hooked up to a load balancer. LaunchConfiguration.new’s associatePublicIpAddress
argument is a Bool, so we’ll need to convert our Optional<ELB.LoadBalancer> argu-
ment into a Bool.

if Optional.isNone(loadBalancer)
then False
else True

Optional.isNone is a standard library function that returns True if the given
optional value is None, and returns False otherwise. We could also do this test
with pattern matching:

case loadBalancer of
| None -> False
| Optional _ -> True

But in this case, we’re not doing anything with the Optional value and the
equivalent if/then/else expression is shorter.

Finally, we need to assemble and return our AutoScalingGroup:

AutoScaling.AutoScalingGroup.new {
subnets: refuge-network.publicSubnets,
minSize: 2,
maxSize: 2,
defaultCooldown: 300,
healthCheckType: AutoScaling.Ec2,
launchConfiguration: lc,
tags: [refuge-tag],
terminationPolicies: [AutoScaling.ClosestToNextInstanceHour],
enabledMetrics: [

AutoScaling.GroupInServiceInstances,
AutoScaling.GroupTotalInstances

],
loadBalancers: case loadBalancer of

| None -> None
| Optional elb -> Optional([elb])

}

The only manipulation we need to do here is to convert our loadBalancer argu-
ment from an Optional<ELB.LoadBalancer> to an Optional<List<ELB.LoadBalancer>>, which
we do via pattern matching.

• Click HERE to purchase this book now. discuss

Reducing Redundancy in Refuge ASGs and Beyond • 9

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

case loadBalancer of
| None -> None
| Optional elb -> Optional([elb])

Note that we cannot rely on optional lifting here (recall Optional Arguments,
on page ?), so we must explicitly wrap the list in an Optional.

Refactoring the Function to Problem-Solve
At this point our function is complete and we’re able to generate AutoScalingGroups
and all of the associated resources for our services. However, we run into one
snag when trying to refactor our composition to use a service—that is, we
reference the security groups for the refuge-web-app and refuge-api services in the
security group rules for our RDS database instance:

refuge-rds-sg: EC2.SecurityGroup.new {
description: "Allow MySQL traffic from the Internet",
ipPermissions: [

EC2.IpPermission.mysql(
EC2.IpPermission.Target.securityGroup(refuge-web-app-sg)

),
EC2.IpPermission.mysql(
EC2.IpPermission.Target.securityGroup(refuge-api-sg)

),
],
tags: [refuge-tag],
vpc: refuge-network.vpc

}

We could extract the security groups from the service AutoScalingGroups, but
there’s a cleaner way to solve the problem with a small change to our service
function. Now that we know we need access to both the Auto Scaling group
and the security group, we can introduce a new type that contains both values
in a way that’s convenient to access in our composition:

type Service:
asg: AutoScaling.AutoScalingGroup
securityGroup: EC2.SecurityGroup

We can then tweak the service definition to return values of type Service, after
which we’ll be able to access the security group using the normal dot notation:

refuge-rds-sg: EC2.SecurityGroup.new {
description: "Allow MySQL traffic from the Internet",
ipPermissions: [

EC2.IpPermission.mysql(
EC2.IpPermission.Target.securityGroup(

refuge-web-app.securityGroup
)

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

),
EC2.IpPermission.mysql(
EC2.IpPermission.Target.securityGroup(

refuge-api.securityGroup
)

),
],
tags: [refuge-tag],
vpc: refuge-network.vpc

}

Let’s make the changes to service. First, we’ll update our function’s type to
reflect the new return value:

fun service {
name: String,
image: String,
policyFile: String,
keyName: String,
loadBalancer: Optional<ELB.LoadBalancer>,
userData: Optional<String>

} -> Service:

Then we need to update the function’s body to create a Service record instead
of returning the AutoScalingGroup directly. We’ll leave the IAM policy, security
group, and launch configuration local bindings as they are.

let asg: AutoScaling.AutoScalingGroup.new {
subnets: refuge-network.publicSubnets,
minSize: 2,
maxSize: 2,
defaultCooldown: 300,
healthCheckType: AutoScaling.Ec2,
launchConfiguration: lc,
tags: [refuge-tag],
terminationPolicies: [AutoScaling.ClosestToNextInstanceHour],
enabledMetrics: [

AutoScaling.GroupInServiceInstances,
AutoScaling.GroupTotalInstances

],
loadBalancers: case loadBalancer of

| None -> None
| Optional elb -> Optional([elb])

}
{asg: asg, securityGroup: sg}

This is pretty much the same as our original implementation, with a new local
binding to hold the AutoScalingGroup and the return value converted to be a
record literal of type Service.

• Click HERE to purchase this book now. discuss

Reducing Redundancy in Refuge ASGs and Beyond • 11

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

We’re now able to convert our composition over to using our new service
function and remove the corresponding top-level resources. In addition to
removing some code, we’re in a good position to evolve our composition. Adding
a new service is just a couple of lines of code, and modifying our service
configuration is standardized and localized to a relatively small chunk of code.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

