
Extracted from:

Scalable Cloud Ops with Fugue
Declare, Deploy, and Automate the Cloud

This PDF file contains pages extracted from Scalable Cloud Ops with Fugue, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Scalable Cloud Ops with Fugue
Declare, Deploy, and Automate the Cloud

Josha Stella and the Fugue team

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-234-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 8

Configuration and
Coordination in Fugue: Vars

Throughout our story, the Refuge organization and its namesake application
have grown. Each step of the way, we’ve deployed more robust versions of
the application in the cloud with Fugue. You’ve coded its infrastructure in
Ludwig—Fugue’s simple but powerful language interface—increasing your
expertise as you’ve added common, real-world services to the system in
development and production.

Refuge, like most systems, maybe like the one you’re working with in daily life,
will experience growing pains and challenges as it scales from its first hundred
to its first hundred thousand users. Some of these problems are purely applica-
tion-level issues: How do we make sure the login system is secure? How do we
deal with internationalization and time zones? How do we make sure users can
find what they’re looking for easily? And some of Refuge’s problems are purely
infrastructural: What instance type should we use for the web servers? Where
can we host static assets? On what metrics should we horizontally scale each
tier? These two types of problems—application and infrastructure—are thought
of as disjointed sets of concerns and are often handled by different people.

As systems get larger and more complex, a third set of issues emerges, one
that touches both the application and the infrastructure: How do we share
or publish infrastructure configuration so that our application can use it?
How do we pick a single instance of our application to perform some task?
How do we make sure all instances of the application perform the same task,
or agree on the state of the world? These problems are, in general, coordination
problems. In this chapter, we’ll look at Vars, a service for handling configura-
tion and coordination with Fugue.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

What Is Vars and How Does It Work?
Vars, an abbreviation of “variable service,” is a replicated key/value store that
has features and semantics that make it useful for coordination, configuration
sharing, credential synchronization, and more.

Vars consists of a server-side component that runs on the Fugue Conductor’s
instance and a small, client-side binary called vars that you install and run on
every instance or node that needs to publish or consume data from Vars. (Recall
your introduction to the Conductor, Fugue’s runtime engine, in Chapter 1,
Simple Themes and First Steps, on page ?, and see Chapter 11, What We Mean
by a, on page ?, for a full discussion.) The vars binary presents a local RESTful
interface by which software on a node can perform operations against the data
store, such as publishing a new value, reading a value, listing values, and
deleting values. In addition to the RESTful interface, the vars binary can perform
all operations on itself, making it very useful for shell scripting and other
automations. Whenever a node publishes a key/value pair, Vars replicates it to
every other Vars node. For example, a Refuge developer who is running vars on
her laptop, as well as on all of the web servers, might publish refuge-prod-assets to
the /static-asset-bucket key in Vars. Vars will replicate that key/value pair to all of
the web servers, where the servers’ software can use it—in this case, specifying
the S3 bucket from which static assets are to be served.

Vars as a Service Registry
One of the core uses of Vars is as a service registry. To connect to a database,
a web instance needs several pieces of configuration: the hostname or IP address
for the database, the port on which the database is listening, a username and
password with which to authenticate the communication, the default database
name, and so on. Where does the software on the web instance get this configu-
ration? We could hard-code these values into the web-instance machine image,
but that makes configuration changes difficult in the future. We would need to
have different images for each environment in which the image would run: for
example, dev, test, and prod environments. Whenever we want to update the
configuration for, say, a new database endpoint or because we have to rotate
the database password, we would have to roll a new image and replace our
entire fleet! We can solve this problem by using a service registry.

A service registry is a key/value store at a known location where pieces of con-
figuration can be stored and shared. Database endpoints, CDN URLs, software
version numbers, and cluster member lists are all examples of runtime configu-
ration we can share with infrastructure components via a service registry.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

Operators or infrastructure components themselves can publish values to
Vars that are usable by other components. With Fugue, when a database
instance is created, the Conductor can publish the database hostname to
Vars for the web instances to read and use. Also, an operator can publish
database credentials (username and password) into Vars, and then the web-
instance software can read those credentials and use them to connect to the
database. We’ll look at sharing sensitive information in Sharing Refuge
Passwords and Secrets with Fugue, on page ?.

The Vars Workflow
Let’s look at how Vars works. For every instance or node that is running Vars,
Fugue’s Conductor creates two SQS queues. One queue is used for replicating
data between nodes, and the other is for receiving operations from the Con-
ductor. This means that Vars does not require that instances have open ports
for Vars to receive updates, which is great for security and makes network
configuration easy. Each Vars instance also maintains a local cache with
key/value pairs that it has received. The following diagram is a visual overview.

• Click HERE to purchase this book now. discuss

What Is Vars and How Does It Work? • 7

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

Whenever a Vars instance wants to publish a new value, that Vars instance
sends an update message to the Conductor. This message contains the
key/value pair, along with some metadata, like a version number. The Con-
ductor receives the message and durably writes it to a log in DynamoDB.
Once this update message has been stored, the Conductor publishes the
updated data to every Vars instance via each one’s SQS queue. When each
instance receives the update, each writes it to its local cache. Note the write
path in the diagram shown next.

When a Vars instance is asked to fetch a value from the store, it first checks
its local cache. Because Vars instances receive updates soon after they are
committed, there is usually a high probability that the value is in the cache.
In this case, the cached value is returned. In the case of a cache miss, the
instance sends a message to the Conductor requesting the key/value pair.
The Conductor fetches it from the DynamoDB log and publishes it to that
instance, via its SQS queue. Again, the value is cached, so future reads are
just local cache operations. See the read path on page 9.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

A First Look at Optimistic Locking

When the Conductor writes an update to the log, it performs the write using optimistic
locking. That is, the version number in the message is used to make sure that Vars
nodes cannot overwrite stale versions of values. This is incredibly useful to deal with
the situation where multiple nodes try to write to the same key at the same time. It’s
also useful for locking, which we’ll cover in greater depth later in this chapter, in
Using Vars as a Lock Service, on page ?.

Vars was designed to support a cluster of nodes with eventual consistency. An opti-
mistic locking strategy is much more flexible and resilient in this type of environment.
Since the vars binary running on each instance acts as a caching service, it is opti-
mized to handle a high rate of read requests. If Vars were to use pessimistic locking,
that would greatly reduce the efficiency of read operations, as they would be blocked
and have to wait for any concurrent writes in the system to complete before returning
information to a requestor. In a replicated keystore such as Vars, the implementation
of optimistic locking is simpler, reducing the complexity of the system as a whole.

This design—where a Vars node effectively broadcasts an item of configuration
or other data, which is then cached by other nodes—works well and is cost-
effective for read-heavy workloads. For example, a single node publishing database
connection parameters to a fleet of web servers constitutes a read-heavy workload.

• Click HERE to purchase this book now. discuss

What Is Vars and How Does It Work? • 9

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

Here, a node publishes the database connection parameters once, and then web
servers read them many times. Extensive instance-side caching in Vars makes
read operations very cheap, in terms of both performance and infrastructure
costs.

Most of the costs associated with Vars, again with respect to performance
and dollars, are in write operations. The most expensive component in the
system is DynamoDB, where write operations are pricier than read operations.
Because of the extensive caching in Vars as well as the lower cost of reads
from DynamoDB in the event of a cache miss, Vars performs tasks efficiently
and is inexpensive to run for read-heavy workloads, like the ones presented
in this chapter. Vars will run just fine under write-heavy workloads, but it
will be more expensive to operate.

Spinning Up Vars
In just a bit, we’ll turn to a couple of fairly common and substantive use
cases for you to peruse with our inquisitive Refuge team, but first let’s cover
some basics. We’ll dive into details so that you can develop real facility with
Vars and get a sense of its versatility. Keep the visuals of Vars architecture
in mind as we examine its installation, commands, and API.

Installing Vars
Like the Fugue command-line utility, Vars is a statically linked binary, so it
does not require any language runtimes or libraries to be installed. Vars
comes with the Fugue CLI, so you already have it. If, however, in your
infrastructure you were to create 20 EC2 instances and you want a Vars
client on each one, it would be overkill to install the whole Fugue CLI on all
the instances just to accomplish that. Instead, you would want to download
the standalone Vars binary and install it on your EC2 instances. Do that from
Fugue’s Download Portal and choose the latest version of Vars for your plat-
form.1 We use the OS X package throughout this chapter.

Installation takes seconds. When it’s completed, run the following commands
in the shell or your favorite terminal emulator to launch Vars:

vars -vv daemon --region=<your_conductor_region>

The -vv and -v flags just give you different levels of verbosity in output. You
can use either. If you’ve been running an older version, downloading the latest
package will upgrade your client. When creating AMIs for use with Fugue,

1. https://download.fugue.co

• 10

• Click HERE to purchase this book now. discuss

https://download.fugue.co
http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

such as the Refuge AMI, you should include Vars. All AMIs and containers
in Fugue’s Download Portal already include Vars, unless otherwise noted.

Learning Commands
One of the best ways to explore a new application, of course, is to start with
a little help. Let’s try that out with Vars and consider the available commands.
Type this:

$ vars --help

You’ll see a response like the following, showing your options in the CLI:

Usage:
vars [OPTIONS] <command>

Application Options:
--human Human-readable text logging
--host= Client Port

-v, --verbose Enable verbose output/logging
--version Show the current version

Help Options:
-h, --help Show this help message

Available commands:
daemon Run the vars daemon
delete Delete values in vars
get Get a value from vars
list List keys in vars
listget Retrieve a list of values from vars
put Put a value into vars
status Retrieve the status of the vars daemon

We’ll dig in a bit to each command, as facility with them is key to using Vars
well and understanding its operational relationships.

• Click HERE to purchase this book now. discuss

Spinning Up Vars • 11

http://pragprog.com/titles/fugue
http://forums.pragprog.com/forums/fugue

