
Extracted from:

Automate Your Home Using Go
Build a Personal Data Center with Raspberry Pi, Docker,

Prometheus, and Grafana

This PDF file contains pages extracted from Automate Your Home Using Go, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com

Automate Your Home Using Go
Build a Personal Data Center with Raspberry Pi, Docker,

Prometheus, and Grafana

Ricardo Gerardi
Mike Riley

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-050-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—November 1, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Now that you have our IT Infrastructure in a Box configured and ready to
accept inbound data, you can begin building our first home automation
project: a networked temperature monitor. This project will use the Raspberry
Pi Pico W’s on-board temperature sensor to report the current ambient tem-
perature around the sensor. The Pico W will then communicate with the
Raspberry Pi that is running the Prometheus server that you set up previously
to poll a web server running on the Pico W. This web server will provide these
temperature values in both Celsius and Fahrenheit measurement metrics.

Once the sensor is calibrated and reporting its results via a REST-accessible
JSON payload, you can deploy the Pico W in a number of environments such
as a basement, a freezer, or even outdoors in order to obtain a reoccurring
series of temperature updates. The Raspberry Pi you set up with Prometheus
and Grafana in the previous chapter will reach out and poll the Pico W at set
intervals. The formatted JSON data obtained from the Pico W will then be
consumed by our Prometheus instance and visualized by our Grafana instance
on the Raspberry Pi server. By visualizing the data, it will be easy to spot
trends and changes in temperature, as well as assign alerts when defined
thresholds are exceeded. For example, you can configure Grafana to email
you when your freezer temperature goes higher than 0 degrees Celsius (32
degree Fahrenheit). That alert could save you from spoiling a lot of frozen
food!

Remarkably, there is also work currently underway to make an minimized
version of the Go language, called TinyGo1 that will be capable of running on
the Pi Pico W as well. Unfortunately at the time of writing this book, TinyGo
was incompatible with the Pico W. The TinyGo project also had not yet ported
Go’s HTTP libraries to TinyGo, making web-based REST calls to a Pico W
running TinyGo a significant, unnecessary burden. As such, we decided to
use MicroPython for our Pi Pico W web interactions. If and when TinyGo
eventually matches parity with MicroPython’s functional HTTP and JSON
libraries running on a Pico W, we may revisit using TinyGo instead of
MicroPython in a future edition. But for now, MicroPython is the most efficient
and easiest Pi Pico W microcontroller language for the job. To learn more
about MicroPython and its Read-Evaluate-Print-Loop (REPL), refer to the
Raspberry Pi Pico Python SDK2 documentation.

Now it’s time to roll up your sleeves, gather up the necessary hardware, and
start building the solution!

1. https://tinygo.org/
2. https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf

• Click HERE to purchase this book now. discuss

https://tinygo.org/
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

Creating A Pico W Development Environment
The Raspberry Pi Pico W is a WiFi-enabled version of their popular Pico micro-
controller design. Unlike the Raspberry Pi which can be reached via a variety
of network protocol connections, such as SSH, the Pico W is a micro-controller,
and thus does not have the storage, memory, or operating system capacity
of a Linux distribution. Instead, it is designed to immediately start a runtime
at power on, and execute whatever program and script it is instructed to do
so. The Pico W currently supports its own C++ libraries and a minimal variant
of Python called MicroPython.3

We will take advantage of this wireless network-enabled Pico W version so
that the Pico W can be placed anywhere there is a WiFi signal it can associate
with, and a power supply it can connect to. However, because the Pico W is
a micro-controller and not a full-blown Linux-based server, we have to do
some additional work to connect to and program for it.

The ideal development environment for a Pico W board is a desktop PC or
laptop running Linux, macOS, or Windows, and a USB to USB micro cable
to connect the Pico W to the computer.

We’re going to install Thonny,4 a particularly useful Python IDE that also
easily communicates with the Pi Pico and Pico W hardware. Thonny runs on
Linux, macOS, and Windows, so downloading and installing this Python-
centric IDE on these platforms should work identically. In addition to being
a useful Python editor, Thonny knows how to connect to and communicate
with the Pico W board, making it a one-stop IDE for Pico W program develop-
ment.

Before you can load and execute MicroPython scripts on the Pico W, you must
first install the MicroPython runtime. Following the installation instructions
on the Raspberry Pi’s Pico documentation website,5 download the UF2 file
that matches your Pico model (the original Pico uses a different UF2 file
compared to the Pico W). Once the correct UF2 file has been downloaded,
hold down the white BOOTSEL button on the Pi Pico W while plugging in a
USB cable between the Pico W and your PC, as shown in the next photo.

3. https://www.raspberrypi.com/documentation/microcontrollers/micropython.html
4. https://thonny.org/
5. https://www.raspberrypi.com/documentation/microcontrollers/micropython.html

• 4

• Click HERE to purchase this book now. discuss

https://www.raspberrypi.com/documentation/microcontrollers/micropython.html
https://thonny.org/
https://www.raspberrypi.com/documentation/microcontrollers/micropython.html
http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

If successful, the PC should see the Pico W as a mountable USB drive, as
indicated in the following screen capture.

• Click HERE to purchase this book now. discuss

Creating A Pico W Development Environment • 5

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

Drag the freshly downloaded MicroPython UF2 file into the mounted Pico W’s
USB drive. The Pico W will automatically recognize this as a special file type
by installing the file and rebooting the Pico W (and thereby ejecting its
mounted USB drive in the process).

With the MicroPython runtime installed, launch the Thonny IDE and verify
that “MicroPython (Raspberry Pi Pico)” is detected in the lower right corner
of the Thonny IDE window, as shown in the following screenshot.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

If you don’t see that, make sure your Pi Pico W is attached to your PC with
the USB cable, and then select that lower right corner section of the Thonny
IDE. Doing so will pop up a list of the various Python runtimes Thonny has
identified on your computer. One of those selections should be the MicroPy-
thon runtime that was installed on the Pi Pico W.

Once properly identified and selected, press the red button located in Thonny’s
toolbar to reset any running Python processes as well as verify communica-
tions with the Pi Pico W board. To verify that everything is working correctly,
enter a simple print() command in the Shell window, such as:

print("It's Time to Go Home!")

Select the Return/Enter key on your keyboard, and if Thonny is properly
connected to and communicating with the Pi Pico W board, you should see
“It’s Time to Go Home!” reprinted below the line of code you entered into
Thonny’s shell window.

Now that you have a working MicroPyhon runtime installed and executing
on the Pi Pico W, you can begin writing a REST server that will poll the Pico
W’s on-board temperature and report that value in both Celsius and
Fahrenheit, formatted in a JSON payload that can be consumed for further
analysis. The values in this JSON will be converted into Prometheus-friendly
formatting using a Go program that we will write to perform the polling and
conversion. But first, we need to get the temperature value off the Pico W’s
on-board temperature sensor, format it into JSON-friendly format, and have
a simple HTTP server ready to accept new connections and deliver the JSON
payload.

• Click HERE to purchase this book now. discuss

Creating A Pico W Development Environment • 7

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

