
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Now that you have your IT Infrastructure in a Box configured and ready to
accept inbound data, you can begin building your first home automation
project: a networked temperature monitor. This project will use the Raspberry
Pi Pico W’s onboard temperature sensor to report the current ambient tem-
perature around the sensor. The Pico W will then communicate with the
Raspberry Pi that is running the Prometheus server that you set up previously
to poll a web server running on the Pico W. This web server will provide these
temperature values in both Celsius and Fahrenheit measurement metrics.

Project’s Hardware Requirements

This project requires these components:

• Raspberry Pi Pico W: The microcontroller with onboard Wi-Fi and a temperature
sensor to report ambient temperature.

• Raspberry Pi server: A Raspberry Pi 3, 4, or Zero 2 to run the Prometheus exporter
to scrape data from the Pico W.

For more details consult Selecting a Raspberry Pi, on page ?.

Once the sensor is calibrated and reporting its results via a REST-accessible
JSON payload, you can deploy the Pico W in a number of environments such
as a basement, a freezer, or even outdoors in order to obtain a reoccurring
series of temperature updates. The Raspberry Pi you set up with Prometheus
and Grafana in the previous chapter will reach out and poll the Pico W at set
intervals. The formatted JSON data obtained from the Pico W will then be con-
sumed by your Prometheus instance and visualized by your Grafana instance
on the Raspberry Pi server. By visualizing the data, it’ll be easy to spot trends
and changes in temperature, as well as assign alerts when defined thresholds
are exceeded. For example, you can configure Grafana to email you when your
freezer temperature goes higher than 0 degrees Celsius (32 degrees Fahrenheit).
That alert could save you from spoiling a lot of frozen food!

Remarkably, there’s also work currently underway to make a minimized ver-
sion of the Go language, called TinyGo1 that’s capable of running on the Pi
Pico W as well. At the time of writing this book, the Wi-Fi driver for the Pico W
is not officially available with TinyGo, but the development version cyw434392

is available. We’ll use this driver for the book’s project. When the driver is
officially integrated within TinyGo, the code will likely not change dramatically,
but the driver´s import path might change.

1. https://tinygo.org/
2. https://github.com/soypat/cyw43439

• Click HERE to purchase this book now. discuss

https://tinygo.org/
https://github.com/soypat/cyw43439
http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

By the end of this chapter, you’ll understand how to work with the Pico W
device, and how to use TinyGo to develop Go programs that fit many micro-
controllers. These important skills will allow you to develop other projects
that use microcontrollers to handle hardware, connectivity, and logic in places
or circumstances where it’s harder to use larger, more power hungry, devices.

Now it’s time to roll up your sleeves, gather up the necessary hardware, and
start building the solution!

Understanding the Pico W Device
The Raspberry Pi Pico W is a Wi-Fi-enabled version of their popular Pico
microcontroller design. Unlike the Raspberry Pi which runs a full Linux
operating system and can be reached via a variety of network protocol connec-
tions, such as SSH, the Pico W is a microcontroller, and thus does not have
the storage, memory, or operating system capacity of a Linux distribution.
Instead, it’s designed to immediately start a runtime at power on, and execute
whatever program and script it’s instructed to do. The Pico W currently sup-
ports its own C++ libraries and a minimal variant of Go called TinyGo.3

We’ll take advantage of this wireless network-enabled Pico W version so that
it can be placed anywhere there’s a Wi-Fi signal it can associate with, and a
power supply it can connect to. However, because the Pico W is a microcon-
troller and not a full-blown Linux-based server, we have to do some additional
work to connect to and program for it.

The ideal development environment for a Pico W board is a desktop PC or
laptop running Linux, macOS, or Windows, and a USB to USB micro cable
to connect the Pico W to the computer. You can develop TinyGo programs
using your preferred IDE or text editor. When you’re done, you’ll use the tinygo
command-line application to compile your program into a UF2 firmware image
compatible with the Pico W. Install TinyGo on your development machine by
following the instructions on the official Quick Install Guide.4

To transfer this image to the Pico W device, you need to start the Pico W in
file transfer mode by holding down the white BOOTSEL button on the Pi Pico W
while plugging in a USB cable between the Pico W and your PC, as shown in
the next photo.

3. https://tinygo.org/
4. https://tinygo.org/getting-started/install/

• 4

• Click HERE to purchase this book now. discuss

https://tinygo.org/
https://tinygo.org/getting-started/install/
http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

If successful, the PC should see the Pico W as a mountable USB drive, as
indicated in the following screen capture.

Drag the freshly compiled UF2 file into the mounted Pico W’s USB drive. The
Pico W will automatically recognize this as a special file type by installing
the file and rebooting the Pico W (and thereby ejecting its mounted USB drive
in the process).

If everything goes well, your program will execute on the Pico W automatically.
You can use TinyGo’s monitor subcommand to monitor the Pico W serial
interface for logs to ensure the program is running.

Now that you understand how to develop and transfer Go programs to the Pi
Pico W, you can begin writing a REST server that will poll the Pico W’s onboard
temperature and report that value in both Celsius and Fahrenheit, formatted

• Click HERE to purchase this book now. discuss

Understanding the Pico W Device • 5

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

in a JSON payload that can be consumed for further analysis. The values in
this JSON will be converted into Prometheus-friendly formatting using a Go
program that we’ll write to perform the polling and conversion. But first, we
need to get the temperature value off the Pico W’s onboard temperature sensor,
format it into JSON-friendly format, and have a simple HTTP server ready to
accept new connections and deliver the JSON payload.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

