
Extracted from:

Automate Your Home Using Go
Build a Personal Data Center with Raspberry Pi, Docker,

Prometheus, and Grafana

This PDF file contains pages extracted from Automate Your Home Using Go, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

http://www.pragprog.com






Automate Your Home Using Go
Build a Personal Data Center with Raspberry Pi, Docker,

Prometheus, and Grafana

Ricardo Gerardi
Mike Riley

The Pragmatic Bookshelf
Dallas, Texas



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-050-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—November 1, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com


In Chapter 4, Networking a Temperature Monitor, on page ?, we created a
network-enabled temperature probe to report current temperature conditions.
While we could use that same approach for monitoring outdoor temperatures
as well, the Pico would need to be shielded in a weather-resistant case. If the
external temperatures became extreme, the Pico might permanently fail.
Fortunately, there are enough external temperature sensors already monitoring
outdoor weather conditions. We can simply poll available API’s for JSON
payloads containing current weather condition values. But rather than simply
report the number, we can use colored bulb lighting to visually indicate
whether it’s cold, comfortable, or hot outside. We will do this by sending color
commands to a Philips Hue lighting setup based on the temperature values
received by the outdoor temperature API call.

Project’s Hardware Requirements

This project requires these components:

• Raspberry Pi server:  A Raspberry Pi 3, 4, or Zero 2 to act as the application
server.

• Hue base station:  Part of the Hue Start Kit, it maintains the inventory and state
of the Hue lighting in your home.

• Hue multi-colored lighting strip:  The light we will program based on the outdoor
temperature.

For more details consult Adding Other Hardware Components, on page ?.

After you complete this project it’s going to look like the following picture,
where you can see the light with two different states:

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome


If the light is blue, grab a jacket because it’s cold outside. Is the light red?
Then it’s warm enough to enjoy the outdoors wearing a T-shirt. Let’s get
started.

Polling the Weather
In order to query the current weather conditions, we need access to an API
that can provide those details. Fortunately, a service called OpenWeather1

offers a free tier for developers that allows a copious number of calls to their
service. Sign up2 to request a free API key. You will need this key when making
calls to OpenWeather’s API. In particular, it will be used to poll the current
outdoor temperature in your area.

Once you have your free OpenWeather API key, test it out by polling the cur-
rent temperature in your area with this small Go program, which uses the
openweathermap package to query the OpenWeather API. Replace the API_KEY
and ZIP_CODE values with your own before running the test. If you live outside
the United States, replace the country code as well:

package main

1. https://openweathermap.org/
2. https://home.openweathermap.org/users/sign_up

• 4

• Click  HERE  to purchase this book now.  discuss

https://openweathermap.org/
https://home.openweathermap.org/users/sign_up
http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome


import (
"fmt"
"log"
"os"

owm "github.com/briandowns/openweathermap"
)

func main() {
w, err := owm.NewCurrent("F", "EN", API_KEY)
if err != nil {

log.Fatalln(err)
}

w.CurrentByZip(ZIP_CODE, "US")
fmt.Println(w.Main.Temp)

}

Save the file as openweathertest.go and run go mod tidy to download GitHub user
Brian Downs’ openweathermap Go library. This library makes it very easy to
use OpenWeather’s API in the Go language environment.

With everything nice and tidy, run the program using the usual Go run syntax
to test your API key, like this:

$ go run openweathertest.go

Assuming the values you replaced for your API_KEY and ZIP_CODE are valid,
you should see the current temperature output in Fahrenheit. If you prefer
the temperature scale be reported in Celsius, change the parameter in
NewCurrent to C, like this:

w, err := owm.NewCurrent("C", "EN", API_KEY)

Congratulations! You now are able to poll the current outdoor temperature
in your area. The OpenWeather API offers many other options you can explore.
The free tier is somewhat limited in the level of detail and forecast information
it provides, but enough data is available to be useful for our project. Feel free
to experiment with other calls to the API, as well as poll other geographic
regions where you might be interested in the current temperature.

In the next section we will use the current temperature value received from
the w.Main.Temp variable and light a Hue Philips color lightstrip to visually
reflect the current outdoor temperature.

Changing the Color
The Hue base station maintains the inventory and state of the Hue lighting
in your home, and the lighting strip is what we will program based on the

• Click  HERE  to purchase this book now.  discuss

Changing the Color • 5

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome


outdoor temperature. In order to make the color of the lighting meaningful,
we need to determine temperature ranges with which to display the appropriate
color. For example, the color blue is frequently associated with cold. So setting
the light strip to that color anytime the temperature is below 50 degrees
Fahrenheit would be a good indicator of cooler temperatures outside. Con-
versely, the color red typically indicates hot. Thus, any time the outdoor
temperature is hotter than 90 degrees, change the light strip color to red.
Here are the color recommendations between those two values:

Blue = Below 50 degrees
Yellow = Between 51 and 65 degrees
Green = Between 66 and 79 degrees
Orange = Between 80 and 89 degrees
Red = Above 90 degrees

Let’s codify those rules in Go using a switch statement and append it to the
openweathermap.go program to test. To make it easier to code the switch statement,
first assign the temperature returned by the API call w.Main.Temp to a new
variable currentTemp in the main function:

var currentTemp = w.Main.Temp

Then, append this switch block to the end of the main function to display the
color:

switch {
case currentTemp < 51:

fmt.Println("Blue")
case currentTemp >= 51 && currentTemp < 66:

fmt.Println("Yellow")
case currentTemp >= 66 && currentTemp < 80:

fmt.Println("Green")
case currentTemp >= 80 && currentTemp < 90:

fmt.Println("Orange")
case currentTemp >= 90:

fmt.Println("Red")
}

Run the program via the usual go run openweathertest.go command, and depending
on the current outdoor temperature, the appropriate color should display
right after the actual temperature value that was evaluated. Now that we have
the proper respective color being indicated based on the outside temperature,
it’s time to hook up and connect to Hue base station.

Programming the Hue
Before we can start programming the Hue from a Go application, make sure
that you have correctly set up the Hue base station on your network, and

• 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome


have added the light strip to the Hue’s inventory. You can use the official
Philips Hue app, available from either the Android3 or iOS4 app stores.

Once you are able to remotely control your Hue light strip from the Hue app,
you are ready to proceed with configuring a new user account on the Hue
base station. You will use this account to interact with and send commands
from your Go application.

There are several Hue libraries for Go available on GitHub. The one that works
best with this particular project was created by GitHub user Collinux, called
gohue. This rudimentary library makes it easy to connect, control, and set
basic colors on Hue lighting.

Before we can remotely control Hue-managed lights, we first need an autho-
rized User ID to log into the Hue base station. The gohue library provides a
CreateUser function that instructs the Hue to generate a new User ID for this
purpose. To do so, write the following Go program:

package main

import (
"github.com/collinux/gohue"

)

func main() {
bridgesOnNetwork, _ := hue.FindBridges()
bridge := bridgesOnNetwork[0]
username, _ := bridge.CreateUser("gohomeuser")
fmt.Println(username)

}

Save the code as createhueuser.go and run it with the Hue base station nearby.
You will need to press the large button on the top of the Hue base station to
auhorize the User ID creation request when the createhueuser.go program is run.

$ go run createhueuser.go

Remember to copy the username ID that is generated after authorizing the
request on the Hue. You will use this ID for programmatic Hue base station
access.

Now that you have created the new authorized Hue account, you can use this
account when programmatically manipulating your Hue lights. Verify that
this newly generated User ID allows you to control your Hue light by creating
a simple program that turns the light on. The following sample code assumes

3. https://play.google.com/store/apps/details?id=com.philips.lighting.hue2
4. https://apps.apple.com/ie/app/philips-hue/id1055281310

• Click  HERE  to purchase this book now.  discuss

Changing the Color • 7

https://play.google.com/store/apps/details?id=com.philips.lighting.hue2
https://apps.apple.com/ie/app/philips-hue/id1055281310
http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome


you named your light ‘Desk’ using the Hue smartphone app. You can reference
this light in your code using the function GetLightByName() and whatever actual
name you assigned to the light using the Hue smartphone app.

package main

import (
"github.com/collinux/gohue"

)

func main() {
HUE_ID := os.Getenv("HUE_ID")
HUE_IP_ADDRESS := os.Getenv("HUE_IP_ADDRESS")

bridge, _ := hue.NewBridge(HUE_IP_ADDRESS)

bridge.Login(HUE_ID)

deskLight, _ := bridge.GetLightByName("Desk")

deskLight.On()
}

Save the code as huetest.go and make sure your HUE_ID and HUE_IP_ADDRESS
environment variables are properly assigned. Then run the code via the typical
go run command.

$ go run huetest.go

If everything ran successfully, your targeted Hue light should turn on. Now
that we can control lights from Go, let’s start expanding our code to run as
a service.

• 8

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/gohome
http://forums.pragprog.com/forums/gohome

