
Extracted from:

Practical Programming, 2nd Edition
An Introduction to Computer Science Using Python 3

This PDF file contains pages extracted from Practical Programming, 2nd Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Practical Programming, 2nd Edition
An Introduction to Computer Science Using Python 3

Paul Gries
Jennifer Campbell

Jason Montojo

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Lynn Beighley (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93778-545-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2013

http://pragprog.com

Programs are made up of commands that tell the computer what to do. These
commands are called statements, which the computer executes. This chapter
describes the simplest of Python’s statements and shows how they can be
used to do arithmetic, which is one of the most common tasks for computers
and also a great place to start learning to program. It’s also the basis of almost
everything that follows.

2.1 How Does a Computer Run a Python Program?

In order to understand what happens when you’re programming, you need
to have a basic understanding of how a computer executes a program. The
computer is assembled from pieces of hardware, including a processor that
can execute instructions and do arithmetic, a place to store data such as a
hard drive, and various other pieces, such as a computer monitor, a keyboard,
a card for connecting to a network, and so on.

To deal with all these pieces, every computer runs some kind of operating
system, such as Microsoft Windows, Linux, or Mac OS X. An operating system,
or OS, is a program; what makes it special is that it’s the only program on
the computer that’s allowed direct access to the hardware. When any other
application (such as your browser, a spreadsheet program, or a game) wants
to draw on the screen, find out what key was just pressed on the keyboard,
or fetch data from the hard drive, it sends a request to the OS (see Figure 1,
Talking to the operating system, on page 6).

This may seem like a roundabout way of doing things, but it means that only
the people writing the OS have to worry about the differences between one
graphics card and another and whether the computer is connected to a
network through ethernet or wireless. The rest of us—everyone analyzing
scientific data or creating 3D virtual chat rooms—only have to learn our way
around the OS, and our programs will then run on thousands of different
kinds of hardware.

Twenty-five years ago that’s how most programmers worked. Today, though,
it’s common to add another layer between the programmer and the computer’s
hardware. When you write a program in Python, Java, or Visual Basic, it
doesn’t run directly on top of the OS. Instead, another program, called an
interpreter or virtual machine, takes your program and runs it for you, trans-
lating your commands into a language the OS understands. It’s a lot easier,
more secure, and more portable across operating systems than writing pro-
grams directly on top of the OS:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy2
http://forums.pragprog.com/forums/gwpy2

Hard Drive Monitor

Operating System

Applications

Figure 1—Talking to the operating system

Hard Drive Monitor

Operating System

Applications Python Interpreter

Python Program

There are two ways to use the Python interpreter. One is to tell it to execute
a Python program that is saved in a file with a .py extension. Another is to
interact with it in a program called a shell, where you type statements one at
a time. The interpreter will execute each statement when you type it, do what
the statement says to do, and show any output as text, all in one window.
We will explore Python in this chapter using a Python shell.

Install Python Now (If You Haven’t Already)

If you haven’t yet installed Python 3, please do so now. (Python 2 won’t do; there are
significant differences between Python 2 and Python 3, and this book uses Python
3.) Locate installation instructions on the book’s website: http://pragprog.com/titles/gwpy2/prac-
tical-programming.

Programming requires practice: you won’t learn how to program just by reading this
book, much like you wouldn’t learn how to play guitar just by reading a book on how
to play guitar.

Python comes with a program called IDLE, which we use to write Python programs.
IDLE has a Python shell that communicates with the Python interpreter and also
allows you to write and run programs that are saved in a file.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy2
http://forums.pragprog.com/forums/gwpy2

We strongly recommend that you open IDLE and follow along with our examples.
Typing in the code in this book is the programming equivalent of repeating phrases
back to an instructor as you’re learning to speak a new language.

2.2 Expressions and Values: Arithmetic in Python

You’re familiar with mathematical expressions like 3 + 4 (“three plus four”)
and 2 - 3 / 5 (“two minus three divided by five”); each expression is built out of
values like 2, 3, and 5 and operators like + and -, which combine their operands
in different ways. In the expression 4 / 5, the operator is “/” and the operands
are 4 and 5.

Expressions don’t have to involve an operator: a number by itself is an
expression. For example, we consider 212 to be an expression as well as a
value.

Like any programming language, Python can evaluate basic mathematical
expressions. For example, the following expression adds 4 and 13:

>>> 4 + 13
17

The >>> symbol is called a prompt. When you opened IDLE, a window should
have opened with this symbol shown; you don’t type it. It is prompting you
to type something. Here we typed 4 + 13, and then we pressed the Return (or
Enter) key in order to signal that we were done entering that expression.
Python then evaluated the expression.

When an expression is evaluated, it produces a single value. In the previous
expression, the evaluation of 4 + 13 produced the value 17. When typed in the
shell, Python shows the value that is produced.

Subtraction and multiplication are similarly unsurprising:

>>> 15 - 3
12
>>> 4 * 7
28

The following expression divides 5 by 2:

>>> 5 / 2
2.5

The result has a decimal point. In fact, the result of division always has a
decimal point even if the result is a whole number:

• Click HERE to purchase this book now. discuss

Expressions and Values: Arithmetic in Python • 7

http://pragprog.com/titles/gwpy2
http://forums.pragprog.com/forums/gwpy2

>>> 4 / 2
2.0

Types

Every value in Python has a particular type, and the types of values determine
how they behave when they’re combined. Values like 4 and 17 have type int
(short for integer), and values like 2.5 and 17.0 have type float. The word float
is short for floating point, which refers to the decimal point that moves around
between digits of the number.

An expression involving two floats produces a float:

>>> 17.0 - 10.0
7.0

When an expression’s operands are an int and a float, Python automatically
converts the int to a float. This is why the following two expressions both return
the same answer:

>>> 17.0 - 10
7.0
>>> 17 - 10.0
7.0

If you want, you can omit the zero after the decimal point when writing a
floating-point number:

>>> 17 - 10.
7.0
>>> 17. - 10
7.0

However, most people think this is bad style, since it makes your programs
harder to read: it’s very easy to miss a dot on the screen and see ‘17’ instead
of ‘17.’.

Integer Division, Modulo, and Exponentiation

Every now and then, we want only the integer part of a division result. For
example, we might want to know how many 24-hour days there are in 53
hours (which is two 24-hour days plus another 5 hours). To calculate the
number of days, we can use integer division:

>>> 53 // 24
2

We can find out how many hours are left over using the modulo operator,
which gives the remainder of the division:

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy2
http://forums.pragprog.com/forums/gwpy2

>>> 53 % 24
5

Python doesn’t round the result of integer division. Instead, it takes the floor
of the result of the division, which means that it rounds down to the nearest
integer:

>>> 17 // 10
1

Be careful about using % and // with negative operands. Because Python takes
the floor of the result of an integer division, the result is one smaller than
you might expect if the result is negative:

>>> -17 // 10
-2

When using modulo, the sign of the result matches the sign of the divisor
(the second operand):

>>> -17 % 10
3
>>> 17 % -10
-3

For the mathematically inclined, the relationship between // and % comes from
this equation, for any two numbers a and b:

(b * (a // b) + a % b) is equal to a

For example, because -17 // 10 is -2, and -17 % 10 is 3; then 10 * (-17 // 10) + -17 %
10 is the same as 10 * -2 + 3, which is -17.

Floating-point numbers can be operands for // and % as well. With //, the result
is rounded down to the nearest whole number, although the type is a floating-
point number:

• Click HERE to purchase this book now. discuss

Expressions and Values: Arithmetic in Python • 9

http://pragprog.com/titles/gwpy2
http://forums.pragprog.com/forums/gwpy2

>>> 3.3 // 1
3.0
>>> 3 // 1.0
3.0
>>> 3 // 1.1
2.0
>>> 3.5 // 1.1
3.0
>>> 3.5 // 1.3
2.0

The following expression calculates 3 raised to the 6th power:

>>> 3 ** 6
729

Operators that have two operands are called binary operators. Negation is a
unary operator because it applies to one operand:

>>> -5
-5
>>> --5
5
>>> ---5
-5

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy2
http://forums.pragprog.com/forums/gwpy2

