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A huge part of computer science involves studying how to organize, store,
and retrieve data. There are many ways to organize and process data, and
you need to develop an understanding of how to analyze how good an approach
is. This chapter introduces you to some tools and concepts that you can use
to tell whether a particular approach is faster or slower than another.

As you know, there are many solutions to each programming problem. If a
problem involves a large amount of data, a slow algorithm will mean the
problem can’t be solved in a reasonable amount of time, even with an
incredibly powerful computer. This chapter includes several examples of both
slower and faster algorithms. Try running them yourself; experiencing just
how slow (or fast) something is has a much more profound effect on your
understanding than the data we include in this chapter.

Searching and sorting data are fundamental parts of programming. In this
chapter, we will develop several algorithms for searching and sorting lists,
and then we will use them to explore what it means for one algorithm to be
faster than another. As a bonus, this approach will give you another set of
examples of how there are many solutions to any problem, and that the
approach you take to solving a problem will dictate which solution you come
up with.

Searching a List
As you have already seen in Table 11, List Methods, on page ?, Python lists
have a method called index that searches for a particular item:

index(...)
L.index(value, [start, [stop]]) -> integer -- return first index of value

List method index starts at the front of the list and examines each item in turn.
For reasons that will soon become clear, this technique is called linear search.
Linear search is used to find an item in an unsorted list. If there are duplicate
values, our algorithms will find the leftmost one:

>>> ['d', 'a', 'b', 'a'].index('a')
1

We’re going to write several versions of linear search in order to demonstrate
how to compare different algorithms that all solve the same problem.

After we do this analysis, we will see that we can search a sorted list much
faster than we can search an unsorted list.
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An Overview of Linear Search
Linear search starts at index 0 and looks at each item one by one. At each
index, we ask this question: Is the value we are looking for at the current
index? We’ll show three variations of this. All of them use a loop of some kind,
and they are all implementations of this function:

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""Return the index of the first occurrence of value in lst, or return
-1 if value is not in lst.

>>> linear_search([2, 5, 1, -3], 5)
1
>>> linear_search([2, 4, 2], 2)
0
>>> linear_search([2, 5, 1, -3], 4)
-1
>>> linear_search([], 5)
-1
"""

# examine the items at each index i in lst, starting at index 0:
# is lst[i] the value we are looking for? if so, stop searching.

The algorithm in the function body describes what every variation will do to
look for the value.

We’ve found it to be helpful to have a picture of how linear search works. (We
will use pictures throughout this chapter for both searching and sorting.)
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Because our versions examine index 0 first, then index 1, then 2, and so on,
that means that partway through our searching process we have this situation:

0

the part we've examined the part we haven't examined yet

i len(lst)

we examine lst[i]  next

lst

There is a part of the list that we’ve examined and another part that remains
to be examined. We use variable i to mark the current index.

Here’s a concrete example of where we are searching for a value in a list that
starts like this: [2, -3, 5, 9, 8, -6, 4, 15, …]. We don’t know how long the list is, but
let’s say that after six iterations we have examined items at indices 0, 1, 2, 3,
4, and 5. Index 6 is the index of the next item to examine:

That vertical line divides the list in two: the part we have examined and the
part we haven’t. Because we stop when we find the value, we know that the
value isn’t in the first part:

0

value not here unknown; still to be examined

i len(lst)

lst

This picture is sometimes called an invariant of linear search. An invariant
is something that remains unchanged throughout a process. But variable i
is changing—how can that picture be an invariant?

Here is a text version of the picture:

lst[0:i] doesn't contain value, and 0 <= i <= len(lst)
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This word version says that we know that value wasn’t found before index i
and that i is somewhere between 0 and the length of the list. If our code
matches that word version, that word version is an invariant of the code, and
so is the picture version.

We can use invariants to come up with the initial values of our variables. For
example, with linear search, at the very beginning the entire list is unknown
—we haven’t examined anything:

0

unknown; still to be examined

i
len(lst)

lst

Variable i refers to 0 at the beginning, because then the section with the label
value not here is empty; further, list[0:0] is an empty list, which is exactly what
we want according to the word version of the invariant. So the initial value
of i should be 0 in all of our versions of linear search.

The while Loop Version of Linear Search

Let’s develop our first version of linear search. We need to refine our comments
to get them closer to Python:

Examine every index i in lst, starting at index 0:
Is lst[i] the value we are looking for? if so, stop searching

Here’s a refinement:

i = 0 # The index of the next item in lst to examine

While the unknown section isn't empty, and lst[i] isn't
the value we are looking for:

add 1 to i

That’s easier to translate. The unknown section is empty when i == len(lst), so
it isn’t empty as long as i != len(lst). Here is the code:

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""Return the index of the first occurrence of value in lst, or return
-1 if value is not in lst.

>>> linear_search([2, 5, 1, -3], 5)
1
>>> linear_search([2, 4, 2], 2)
0
>>> linear_search([2, 5, 1, -3], 4)
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-1
>>> linear_search([], 5)
-1
"""

i = 0 # The index of the next item in lst to examine.

# Keep going until we reach the end of lst or until we find value.
while i != len(lst) and lst[i] != value:

i = i + 1

# If we fell off the end of the list, we didn't find value.
if i == len(lst):

return -1
else:

return i

This version uses variable i as the current index and marches through the
values in lst, stopping in one of two situations: when we have run out of values
to examine or when we find the value we are looking for.

The first check in the loop condition, i != len(lst), makes sure that we still have
values to look at; if we were to omit that check, then if value isn’t in lst, we
would end up trying to access lst[len(lst)]. This would result in an IndexError.

The second check, lst[i] != value, causes the loop to exit when we find value. The
loop body increments i; we enter the loop when we haven’t reached the end
of lst, and when lst[i] isn’t the value we are looking for.

After the loop terminates, if i == len(lst) then value wasn’t in lst, so we return -1.
Otherwise, the loop terminated because we found value at index i.

The for Loop Version of Linear Search

The first version evaluates two Boolean subexpressions each time through
the loop. But the first check, i != len(lst), is almost unnecessary; it evaluates
to True almost every time through the loop, so the only effect it has is to make
sure we don’t attempt to index past the end of the list. We can instead exit
the function as soon as we find the value:

i = 0 # The index of the next item in lst to examine

For each index i in lst:
If lst[i] is the value we are looking for:

return i

If we get here, value was not in lst, so we return -1
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In this version, we use Python’s for loop to examine each index.

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""… Exactly the same docstring goes here …
"""

for i in range(len(lst)):
if lst[i] == value:

return i

return -1

With this version, we no longer need the first check because the for loop con-
trols the number of iterations. This for loop version is significantly faster than
our first version; we’ll see in a bit how much faster.

Sentinel Search

The last linear search we will study is called sentinel search. (A sentinel is a
guard whose job it is to stand watch.) Remember that one problem with the
while loop linear search is that we check i != len(lst) every time through the loop
even though it can never evaluate to False except when value is not in lst. So
we’ll play a trick: we’ll add value to the end of lst before we search. That way
we are guaranteed to find it! We also need to remove it before the function
exits so that the list looks unchanged to whoever called this function:

Set up the sentinel: append value to the end of lst

i = 0 # The index of the next item in lst to examine

While lst[i] isn't the value we are looking for:
Add 1 to i

Remove the sentinel

return i

Let’s translate that to Python:

from typing import Any

def linear_search(lst: list, value: Any) -> int:
"""… Exactly the same docstring goes here …
"""

# Add the sentinel.
lst.append(value)

i = 0

# Keep going until we find value.
while lst[i] != value:

i = i + 1
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# Remove the sentinel.
lst.pop()

# If we reached the end of the list we didn't find value.
if i == len(lst):

return -1
else:

return i

All three of our linear search functions are correct. Which one you prefer is
largely a matter of taste: some programmers dislike returning in the middle
of a loop, so they won’t like the second version. Others dislike modifying
parameters in any way, so they won’t like the third version. Still others will
dislike that extra check that happens in the first version.

Timing the Searches

Here is a program that we used to time the three searches on a list with about
ten million values:

import time
import linear_search_1
import linear_search_2
import linear_search_3

from typing import Callable, Any

def time_it(search: Callable[[list, Any], Any], L: list, v: Any) -> float:
"""Time how long it takes to run function search to find
value v in list L.
"""

t1 = time.perf_counter()
search(L, v)
t2 = time.perf_counter()
return (t2 - t1) * 1000.0

def print_times(v: Any, L: list) -> None:
"""Print the number of milliseconds it takes for linear_search(v, L)
to run for list.index, the while loop linear search, the for loop
linear search, and sentinel search.
"""

# Get list.index's running time.
t1 = time.perf_counter()
L.index(v)
t2 = time.perf_counter()
index_time = (t2 - t1) * 1000.0

# Get the other three running times.
while_time = time_it(linear_search_1.linear_search, L, v)
for_time = time_it(linear_search_2.linear_search, L, v)
sentinel_time = time_it(linear_search_3.linear_search, L, v)
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print("{0}\t{1:.2f}\t{2:.2f}\t{3:.2f}\t{4:.2f}".format(
v, while_time, for_time, sentinel_time, index_time))

L = list(range(10000001)) # A list with just over ten million values

print_times(10, L) # How fast is it to search near the beginning?
print_times(5000000, L) # How fast is it to search near the middle?
print_times(10000000, L) # How fast is it to search near the end?

This program makes use of function perf_counter in built-in module time. Func-
tion time_it will call whichever search function it’s given on v and L and returns
how long that search took. Function print_times calls time_it with the various
linear search functions we have been exploring and prints those search times.

Linear Search Running Time
The running times of the three linear searches with that of Python’s list.index
are compared in Table 18. This comparison used a list of 10,000,001 items
and three test cases: an item near the front, an item roughly in the middle,
and the last item. Except for the first case, where the speeds differ by very
little, our while loop linear search takes about thirteen times as long as the
one built into Python, and the for loop search and sentinel search take about
five and seven times as long, respectively.

list.indexsentinelforwhileCase

0.010.010.010.01First

1066975151261Middle

212139410292673Last

Table 18—Running Times for Linear Search (in milliseconds)

What is more interesting is the way the running times of these functions
increase with the number of items they have to examine. Roughly speaking,
when they have to look through twice as much data, every one of them takes
twice as long. This is reasonable because indexing a list, adding 1 to an inte-
ger, and evaluating the loop control expression require the computer to do a
fixed amount of work. Doubling the number of times the loop has to be exe-
cuted therefore doubles the total number of operations, which in turn should
double the total running time. This is why this kind of search is called linear:
the time to do it grows linearly with the amount of data being processed.

Binary Search
Consider a list of 1 million sorted values. Linear search starts at the beginning
of the list and asks, “Is this value what I’m looking for?” If it isn’t, the same is
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asked about the second value, and then the third. Up to 1 million questions
are asked. This algorithm doesn’t take advantage of the list being sorted.

Here’s a new algorithm, called binary search, that relies on the list being
sorted: look at the middle value and ask, “Is this value bigger than or smaller
than the one I’m looking for?” With that one question, we can eliminate
500,000 values! That leaves a list of 500,000 values to search. We’ll do it
again: look at the middle value, ask the same question, and eliminate
another 250,000 values. We have eliminated 3/4 of the list with only two
questions! Asking only 20 questions, we can locate a particular value in a list
of 1 million sorted values.

Logarithms

The logarithm of a number is how many times that number can be divided until we
get to 1. We’ll need to know what number we are dividing by—we’ll call that the base.
For binary search, we use base 2, because we divide the list in half each iteration.

The logarithm base 2 of 1, which we’ll write as log2 1, is 0: we don’t need to divide 1
at all in order to reach 1.

log2 2 is 1, because 2⁄2 is 1.

log2 4 is 2: 4⁄2 is 2, and 2⁄2 is 1, so we divided by 2 twice to reach 1.

log2 8 is 3: 8⁄2 is 4, 4⁄2 is 2, and 2⁄2 is 1. Every time we double the number, the logarithm
base 2 increases by 1.

Here’s a table of base 2 logarithms:

log2 NN as a power of 2N (the # of items)

0201

1212

2224

3238

42416

52532

62664

727128

828256

929512

102101024

Table 19—Logarithmic Growth
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To figure out how fast it is, we’ll think about how big a list we can search
with a certain number of questions. With only one question, we can determine
whether a list of length 1 contains a value. With two questions, we can search
a list of length 2. With three questions, we can search a list of length 4. Four
questions, length 8. Five questions, length 16. Every time we get to ask
another question, we can search a list twice as big.

Using logarithmic notation, N sorted values can be searched in ceiling(log2 N)
steps, where ceiling() is the ceiling function that rounds a value up to the
nearest integer. As shown in Table 20, this increases much less quickly than
the time needed for linear search.

Worst Case—Binary SearchWorst Case—Linear SearchSearching N Items

7100100

1010001000

1410,00010,000

17100,000100,000

201,000,0001,000,000

2410,000,00010,000,000

Table 20—Logarithmic Growth

The key to binary search is to keep track of three parts of the list: the left
part, which contains values that are smaller than the value we are searching
for; the right part, which contains values that are equal to or larger than the
value we are searching for; and the middle part, which contains values that
we haven’t yet examined—the unknown section. If there are duplicate values,
we will return the index of the leftmost one, which is why the “equal to” section
belongs on the right.

We’ll use two variables to keep track of the boundaries: i will mark the index of
the first unknown value, and j will mark the index of the last unknown value:

0

unknown

i len(lst)

lst

j

value < v value >= v

At the beginning of the algorithm, the unknown section makes up the entire
list, so we will set i to 0 and j to the length of the list minus one as shown in
the figure on page 15.
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0

unknown; still to be examined

i

lst

len(lst) - 1
j

We are done when that unknown section is empty—when we’ve examined
every item in the list. This happens when i == j + 1—when the values cross.
(When i == j, there is still one item left in the unknown section.) Here is a
picture of what the values are when the unknown section is empty:

0 i len(lst)

lst

j

value < v value >= v

To make progress, we will set either i or j to near the middle of the range
between them. Let’s call this index m, which is at (i + j) // 2. (Notice the use of
integer division: we are calculating an index, so we need an integer.)

Think for a moment about the value at m. If it is less than v, we need to move
i up, while if it is greater than v, we should move j down. But where exactly
do we move them?

When we move i up, we don’t want to set it to the midpoint exactly, because
L[m] isn’t included in the range; instead, we set it to one past the middle—in
other words, to m + 1.

new i

len(lst)

lst

j

unknownvalue < v

i m

Similarly, when we move j down, we move it to m - 1:

0

unknown

i len(lst)

lst

j

value < v value >= v

new j

m
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The completed function is as follows:

from typing import Any

def binary_search(L: list, v: Any) -> int:
"""Return the index of the first occurrence of value in L, or return
-1 if value is not in L.

>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 1)
0
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 4)
2
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 5)
4
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 10)
7
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], -3)
-1
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 11)
-1
>>> binary_search([1, 3, 4, 4, 5, 7, 9, 10], 2)
-1
>>> binary_search([], -3)
-1
>>> binary_search([1], 1)
0
"""

# Mark the left and right indices of the unknown section.
i = 0
j = len(L) - 1

while i != j + 1:
m = (i + j) // 2
if L[m] < v:

i = m + 1
else:

j = m - 1

if 0 <= i < len(L) and L[i] == v:
return i

else:
return -1

if __name__ == '__main__':
import doctest
doctest.testmod()

There are a lot of tests because the algorithm is quite complicated and we
wanted to test pretty thoroughly. Our tests cover these cases:
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• The value is the first item.
• The value occurs twice. We want the index of the first one.
• The value is in the middle of the list.
• The value is the last item.
• The value is smaller than everything in the list.
• The value is larger than everything in the list.
• The value isn’t in the list, but it is larger than some and smaller than others.

• The list has no items.
• The list has one item.

In Chapter 15, Testing and Debugging, on page ?, you’ll learn a different
testing framework that allows you to write tests in a separate Python file (thus
making docstrings shorter and easier to read; only a couple of examples are
necessary), and you’ll learn strategies for coming up with your own test cases.

Binary Search Running Time
Binary search is much more complicated to write and understand than linear
search. Is it fast enough to make the extra effort worthwhile? To find out, we
can compare it to list.index. As before, we search for the first, middle, and last
items in a list with about ten million elements as shown in Table 21.

Ratiobinary_searchlist.indexCase

0.320.020.007First

59100.02105Middle

116610.02 (Wow!)211Last

Table 21—Running Times for Binary Search

The results are impressive. Binary search is up to several thousand times
faster than its linear counterpart when searching ten million items. Most
importantly, if we double the number of items, binary search takes only one
more iteration, whereas the time for list.index nearly doubles.

Note also that although the time taken for linear search grows in step with
the index of the item found, there is no such pattern for binary search. No
matter where the item is, it takes the same number of steps.

Built-In Binary Search
The Python standard library’s bisect module includes binary search functions
that are slightly faster than our binary search. Function bisect_left returns the
index where an item should be inserted in a list to keep it in sorted order,
assuming it is sorted to begin with. insort_left actually does the insertion.

• Click  HERE  to purchase this book now.  discuss

Binary Search • 17

http://pragprog.com/titles/gwpy3
http://forums.pragprog.com/forums/gwpy3


The word left in the name signals that these functions find the leftmost (lowest
index) position where they can do their jobs; the complementary functions
bisect_right and insort_right find the rightmost.

There is one minor drawback to binary search: the algorithm assumes that
the list is sorted, and sorting is time and memory intensive. We’ll look at
that next.
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