Th
Pra ematic

ogrammers

Practical Programming
Third Edition An Introduction to
Computer Science

Using Python 3.6

Paul Gries
Jennifer Campbell
Jason Montojo
edited by Tammy Coron

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Programs are composed of commands that instruct the computer on what to
do. These commands are called statements, which the computer executes.
This chapter describes the simplest of Python’s statements and shows how
they can be used to do arithmetic, which is one of the most common tasks
for computers and also a great place to start learning to program. It’s also
the basis of almost everything that follows.

How Does a Computer Run a Python Program?

To understand what happens when you're programming, it helps to have a
mental model of how a computer executes a program.

A modern computer is built from several hardware components, including a
processor (Central Processing Unit, a CPU) that runs programs and performs
calculations, storage such as a solid-state drive (SSD) to hold data, and other
essential parts, such as a touchscreen or monitor, keyboard, and Wi-Fi or
cellular connectivity for getting online.

Why Is a CPU “Central”?
Older computers from the 1960s had more than one processing
unit, including a central processing unit and peripheral processing
units, also known as input/output processors. Modern computers
also have more than one processing unit, the others usually being
a graphics processing unit (GPU) or a digital signal processor
(DSP).

To manage all these components, every computer runs an operating system
(OS), such as Microsoft Windows, Linux, or macOS. An operating system is
one of the few programs that has direct access to the hard-

An operating system is a ware. When any other application (such as your browser, a

program that manages
your computer’s hardware

spreadsheet program, or a game) wants to draw on the
screen, find out what key was just pressed on the keyboard,
or fetch data from storage, it sends a request to the OS:

Applications

§

Operating System

§ ¥

Storage Device Screen

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

o4

This arrangement may seem like a convoluted approach to getting things
done, such as displaying images on the screen or responding to your actions.
Yet, it means that only the people writing the OS have to worry about the
differences between one graphics card and another, as well as whether the
computer is connected to a network via Ethernet or wireless. The rest of us,
analyzing scientific data, creating mobile apps, editing videos, or exploring
virtual worlds, only have to learn our way around the OS, and our programs
will then run on thousands of different kinds of hardware.

Today, it’s common to add another intermediary (a layer) between the pro-
grammer and the computer’s hardware. When you write a program in Python,
Java, or Visual Basic, the program doesn’t run directly in contact with the
OS. Instead, another program called an interpreter or virtual machine translates
your program’s commands into a language the OS understands. Command
interpretation is easier, more secure, and more portable across operating
systems than direct execution, although the latter is somewhat faster:

Python Program

i

Applications Python Interpreter

§ §

Operating System

{ §

Storage Device Screen

There are two ways to use the Python interpreter. One is to use a command
to execute a Python program saved in a file with a .py
extension. The other is to interact with the interpreter in a
program called a shell, where you type statements one at a
time. The interpreter will execute each statement when you
type it, do what the statement says to do, and show any output as text, all
in one window. You will explore Python in this chapter using a Python shell.

Programs are made up of
statements

Expressions and Values: Arithmetic in Python

You're familiar with mathematical expressions like 3 + 4 (“three plus four”)
and 2-3/5 (“two minus three divided by five”); each expression is built out of
values like 2, 3, and 5 and operators like + and -, which combine their operands

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

Expressions and Values: Arithmetic in Python ® 5

If you haven't yet installed Python, please do so now. (Python 2 won’t do; there are
significant differences between Python 2 and Python 3, and this book uses Python
3.14))

Programming requires practice: you won't learn how to program just by reading this
book, much like you wouldn’t know how to play guitar just by reading a book on how
to play guitar.

Python comes with a program called IDLE, which you use to write Python programs.
IDLE has a Python shell that communicates with the Python interpreter and also
allows you to write and run programs that are saved in a file.

We strongly recommend that you open IDLE and follow along with the examples.
Typing in the code in this book is the programming equivalent of repeating phrases
back to an instructor as you're learning to speak a new language.

in different ways. In the expression 4/5, the operator is “/” and the operands
are 4 and 5.

Expressions don’t have to involve an operator: a number by itself is an
expression. For example, 212 is an expression as well as a value.

Like any programming language, Python can evaluate basic mathematical
expressions. For example, the following expression adds 4 and 13:

>>> 4 + 13
17

The >>> symbol is called a prompt. When you start IDLE, the window should
open with this symbol displayed; you don’t type it. It is prompting you to type
something. Type 4 + 13, and then press the |Return| (or |Enter)) key to signal
that you are done entering that expression. Python then evaluated the
expression.

When an expression is evaluated, it produces a single value. In the previous
expression, the evaluation of 4 + 13 produced the value 17. When you type the
expression in the shell, Python shows the value that is produced.

Subtraction and multiplication are similarly unsurprising:

>>> 15 - 3
12
>>> 4 *x 7
28

The following expression divides 5 by 2:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

°6

>>> 5 / 2
2.5

The result has a decimal point, even if it is a whole number:

>>> 4 / 2
2.0

Types

Every value in Python has a particular type (a data type, and the types of
values determine how they behave when they're combined.
Values like 4 and 17 have type int (short for integer), and
values like 2.5 and 17.0 have type float. The word float is short
for floating point, which refers to the decimal point that
moves around between digits of a number.

Every value in Python has
a specific type

An expression involving two floats produces a float:

>>> 17.0 - 10.0
7.0

When an expression’s operands are an int and a float, Python automatically
converts the int to a float. This conversion is why the following two expressions
both return the same answer:

>>> 17.0 - 10
7.0
>>> 17 - 10.0
7.0

If you want, you can omit the zero after the decimal point when writing a
floating-point number:

>>> 17 - 10.
7.0
>>> 17. - 10
7.0

However, this omission is considered bad style, since it makes your programs
harder to read: it’s very easy to miss a dot on the screen and see 17 instead
of 17. (with a period).

Integer Division, Modulo, and Exponentiation

Now and then, you want only the integer part of a division result. For example,
you might want to know how many 24-hour days there are in 53 hours (which
is two 24-hour days plus another 5 hours). To calculate the number of days,
you can use integer division:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

Expressions and Values: Arithmetic in Python ¢ 7

>>> 53 // 24
2

You can determine the number of hours remaining by using the modulo
operator, which returns the remainder of the division:

>>> 53 % 24
5

Python doesn’t round the result of integer division. Instead, it takes the floor
of the result of the division (truncates the fractional part):

>>> 17 // 10
1

Be careful about using % and // with negative operands. Because Python takes
the floor of the result of an integer division, the result is one smaller than
you might expect if the result is negative:

>>> -17 // 10
-2

When using modulo, the sign of the result matches the sign of the divisor
(the second operand):

>>> =17 % 10

3

>>> 17 % -10
-3

For the mathematically inclined, the relationship between // and % comes from

this equation: for any two non-zero numbers a and b, (b*(a//b) + a % b) is equal
to a.

For example, because -17 // 10 is -2, and -17 % 10 is 3; then 10 * (-17 // 10) + -17 %
10 is the same as 10 *-2 + 3, which is -17.

Floating-point numbers can also be operands for // and % operators. With //,
division is performed and the result is rounded down to the nearest whole
number, although the type is a floating-point number:

>> 3.3 // 1
3.0

>>> 3 // 1.0
3.0

>> 3 // 1.1
2.0

>>> 3.5 // 1.1
3.0

>>> 3.5 // 1.3
2.0

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

°8

The following expression calculates 3 raised to the power of 6:

>>> 3 ** g
729

Operators that have two operands are referred to as binary operators. Negation
is a unary operator because it applies to one operand:

>>> -5
-5

>>> --5
5

>>> -==5
-5

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

