
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Python treats many data collections as ordered sequences. The most common
are lists (mutable), tuples (immutable), and strings (immutable). You learned
in Processing Items in a List, on page ? how to iterate through a sequence
item by item in a loop. Loops over sequences are so essential to modern
idiomatic (or “Pythonic,” as further explained in Pythonic Programming [Zin21])
programming that the language provides a family of iteration tools that hide
low-level loop bookkeeping and help you write clear, efficient programs.

Being Pythonic

Adjective “Pythonic” refers to Python code that follows the lan-
guage’s idioms, philosophy, and design principles, rather than
just using Python’s syntax to write code that resembles another
language. It emphasizes readability, simplicity, and the use of
built-in features effectively to write clear, efficient, and maintain-
able programs.

Core Idioms
Consider the following task: given a list or tuple of words from a social media
post, extract a list of hashtags (items that begin with #) and return them as
“normal” words without the “hash.” For example, the input ['#Mary', 'had', 'a',
'little', '#lamb'] should produce the output ['Mary', 'lamb'].

You can build the result incrementally in a loop. Note: as tempting as it is to
compare the first character of an item with '#' (i.e., item[0] == '#'), that’s unsafe:
some items on the list might be empty strings, and indexing would raise an
error. The function startswith handles empty strings correctly.

data = ['#Mary', 'had', 'a', 'little', '#lamb']

result = [] # Initialize an empty list
for item in data:

if item.startswith('#'): # Check the condition
result.append(item[1:]) # Strip the leading '#' and append

print(result) # ['Mary', 'lamb']

This style is known as imperative programming: it works at a lower level of
abstraction (Programs and Programming, on page ?) and emphasizes how
a result is produced, often focusing on implementation details as much as
on the outcome itself. By contrast, comprehensions are a higher-level,
declarative programming construct: they describe the transformation from
inputs to outputs and typically abstract away the underlying implementation.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

Comprehensions
The hashtag extraction task is a special case of a common Filter–Map–Reduce
pattern in data processing (you can read more about the pattern in Functional
Programming Patterns in Scala and Clojure [Bev13]). The pattern typically
involves three steps: filtering (selecting items that meet a condition), mapping
(transforming each selected item), and reducing (aggregating results).

Design Patterns

A design pattern is a general, reusable solution to a recurring
problem in software design. It is not a complete solution but a
blueprint that must be adapted and implemented in code. Read
more about design patterns in Design Patterns: Elements of
Reusable Object-Oriented Software [GHJV95].

Python supports the Filter–Map–Reduce pattern with three types of compre-
hensions: list, set, and dictionary. The two general list comprehension forms
are:

[«expr» for «var» in «data»]
[«expr» for «var» in «data» if «cond»]
In the first form, expr is evaluated for every var in data, and the results are
collected into a list. If data is ordered (a tuple, a list, or a string), the result
preserves that order. As an example, consider computing the lengths of each
item in data:

data = ['#Mary', 'had', 'a', 'little', '#lamb']

result = [len(item) for item in data]
print(result) # [5, 3, 1, 6, 5]

In the second form, expr is evaluated only for the items that satisfy the condi-
tion cond. All other items are filtered out. In the following example, the parts
of the comprehension that correspond to the filter, map, and reduce actions,
are placed on separate lines for clarity.

result = [
item[1:] # map
for item in data
if item.startswith('#') # filter

] # reduce (implicit list construction)
print(result) # ['Mary', 'lamb']

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

How to “Comprehend” Comprehensions

Read a comprehension aloud by starting at the keyword for: “for
every item in data, if item.startswith('#')...” (“filter”).

Go back to the beginning and prepend “calculate” before the
expression: “...calculate item[1:]” (“map”).

Add “...and assemble the results” (“reduce”).

This mirrors the execution order and often makes complex com-
prehensions easier to understand.

If you omit the if clause in a comprehension, there is no filtering: every item
is included. The expression at the front can also be trivial (just the loop vari-
able) or even a constant. You can use the latter form to count values that
satisfy the condition:

result1 = [item for item in data if item.startswith('#')]
print(result1) # ['#Mary', '#lamb']
result2 = [1 for item in data if item.startswith('#')]
print(result2) # [1, 1]
print(len(result2)) # 2

Last but not least, if the expression is just a variable and there is no condition,
the comprehension makes a copy of the original sequence, serving as an
expensive equivalent of data[:].

result = [item for item in data]
print(result == data[:]) # True

A set comprehension uses curly braces {} instead of square brackets [] and
produces a set. Think of it as essentially an application of set to a list compre-
hension:

result = {item[1:] for item in data if item.startswith('#')}
print(result) # {'Mary', 'lamb'}

Storing hashtags in a set dramatically improves performance of membership
tests because Python sets use hash tables internally (see Hash Tables and
Why They Matter, on page ?).

present = 'Mary' in result
print(present) # True

Quite expectedly, a dictionary comprehension produces a dictionary. As such,
for every dictionary item, it needs a key and a value, separated by a colon:

{«key_expr»: «value_expr» for «var» in «data»}
{«key_expr»: «value_expr» for «var» in «data» if «cond»}

• Click HERE to purchase this book now. discuss

Core Idioms • 5

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

Now, you can precompute a mapping from hashtags to their lengths. To
facilitate lookups, convert the keys to lowercase (or any other standard form):

result = {item[1:].lower() : len(item[1:])
for item in data if item.startswith('#')}

print(result) # {'mary': 4, 'lamb': 4}

If a hashtag happens in data more than once, the duplicates will be merged
during the dictionary construction.

One limitation of comprehensions is that each produces only one output
collection. If you want to split items into two groups (those that meet a condi-
tion and those that don’t), you must have two comprehensions with comple-
mentary conditions, iterating over the same data twice.

hashtags = {item[1:].lower() : len(item[1:])
for item in data if item.startswith('#')}

justwords = {item.lower() : len(item)
for item in data if not item.startswith('#')}

This approach is inefficient, particularly for large datasets. A single-pass for
loop is a better alternative:

hashtags = {}
justwords = {}
for item in data:

if item.startswith('#'):
hashtags[item[1:].lower()] = len(item[1:])

else:
justwords[item.lower()] = len(item)

Generators
Comprehensions create the entire output collection in memory, even if you
need it piecewise, item by item.

Suppose you want the average length of the words in data. A straightforward
approach involves building a list of lengths and then calculating the average:

lengths = [len(item) for item in data]
average = sum(lengths) / len(data)
print(average) # 4.0

Note that the list lengths exists only to be immediately reduced to a single
number by summation. If data is large, so is lengths, even though the built-in
function sum needs items one at a time, not all at once. Having a comprehen-
sion-like expression that produces items as needed would make this code
more memory-efficient.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

Enter generators. A generator expression yields (“generates”) values on demand.
It looks like a list comprehension, but it is enclosed in parentheses ():

lengths = (len(item) for item in data)
print(type(lengths)) # <class 'generator'>

Generator expressions
yield items lazily (on

demand), which saves
memory for large datasets

The value returned by a generator expression is an object
of class generator. A generator uses lazy evaluation: it doesn’t
return the results themselves but a “promise” to produce
them later. That “promise” can be fulfilled explicitly by calling
the built-in function next (beware that each call to next con-
sumes the next generated value and may exhaust the gener-

ator before it is otherwise used):

>>> data = ['#Mary', 'had', 'a', 'little', '#lamb']
>>> lengths = (len(item) for item in data)
>>> next(lengths)
5
>>> next(lengths)
3
>>> next(lengths)
1
>>> next(lengths)
6
>>> next(lengths)
5
>>> next(lengths)
Traceback (most recent call last):

File "<python-input-7>", line 1, in <module>
next(lengths)
~~~~^^^^^^^^^

StopIteration

At the end of the sequence, the generator raises a StopIteration exception.

Alternatively, pass the generator to an aggregating function, such as sum:

average = sum(lengths) / len(data)
print(average) # 4.0

Generator expressions may be slightly slower than plain list comprehensions,
and they can’t be reused: they must be re-created to iterate again. However,
for large datasets, they are often essential, making the difference between
feasible and infeasible list processing.

• Click  HERE  to purchase this book now.  discuss

Core Idioms • 7

http://pragprog.com/titles/gwpy4
http://forums.pragprog.com/forums/gwpy4

