Thy
Pragmatic

(5}
I%ggrarmners

Haskell Brain Teasers

Exercise Your Mind

Rebecca SKinnErey

Series editor: Miki Tebeka
Development editor: Michael Swaine

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.


https://www.pragprog.com

Do You Even Lift?

- J

src/HaskellBrainTeasers/UnsafeToTheMax.hs

module HaskellBrainTeasers.UnsafeToTheMax where
import System.IO.Unsafe

import Data.IORef

import Data.Foldable

import Control.Monad

unsafeMax :: [Int] -> IO Int
unsafeMax vals = do
for vals $ \val -> do
currentMax <- readIORef maxRef
when (val > currentMax) $
writeIORef maxRef val
readIORef maxRef
where
maxRef = unsafePerformIO0O $ newIORef 0O

main :: I0 ()

main = do
four <- unsafeMax [4,3,2]
three <- unsafeMax [3,2,1]
two <- unsafeMax [2,1,0]
print [four, three, twol

Guess the Output

Before moving on to the next page, try to guess the output. Will
it finish running?

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FUnsafeToTheMax.hs
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

Puzzle 6. Do You Even Lift? ® 4

When built with optimizations, the program outputs
[4,4,4]

When built without optimizations, the program outputs
[4,3,2]

Discussion

This puzzle illustrates the dangers of unsafePerformlO. Although the program
typechecks, its runtime behavior depends on how it’s built. To fix the puzzle
we’ll need to understand how unsafePerformlO works, when it doesn’t, and how
to guard against things that might cause our program to behave unpredictably.

Impure Haskell

Although Haskell has a reputation for strictly enforcing pure functional pro-
gramming, there are escape hatches that allow you to evaluate 10 actions in
pure code. These functions aren’t just a novelty, unsafePerformlO and its cousins
unsafeDupablePerformlO and unsafelnterleavelO solve real problems, and they can be
used to write safe and easy to use code. Even the amusingly named accurse-
dUnutterablePerformlO has its place as more than simply being a trap for the
incautious developer. Still, useful or not, this puzzle demonstrates that these
functions have rightfully earned the unsafe part of their names.

To use unsafePerformlO safely you need to ensure that:

e The 10 action doesn’t interact with the external environment
e The call can’t be moved elsewhere by the compiler
* You don’t use unsafePerformlO to get a polymorphic value

Avoiding the External Environment

unsafePerformlO is best used for code that’s still pure from the perspective of any
consumers who use it. If you're careful, you can use unsafePerformlO to safely
acquire and initialize resources from the system. For example, creating an
IORef or MVar. Since these resources are created on demand and not shared,
creating a new one isn't a visible side effect anywhere else in your code.

The difference between what'’s internal to your program and what’s part of
the external environment often comes down to your personal judgement, and
risk tolerance, rather than clear objective guidelines. Reading or writing to
ordinary files is risky because anything else inside or outside of your program
could change or delete a file at any time, and the exact time that you’ll read

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

Discussion ¢ 5

the contents of the file are non-deterministic. Initializing your program with
the contents of a read-only file is probably safer, but still not guaranteed to
work in the presence of a user with sudo access and a grudge. Opening a new
log file at program startup is safer still, unless the filesystem has disappeared
or our sudoer got chmod happy. unsafePerformlO is, in the end, not safe and it's
up to you as a developer to decide when to use it.

Avoiding Relocation

One of the biggest risks when using unsafePerformlO is that our programs might
behave unexpectedly because of optimizations GHC makes that are safe for
pure functions, but break down when we introduce side effects. This usually
happens because GHC has changed when or how often side effects get evalu-
ated. There are three causes for this: inlining, let floating, and common
subexpression elimination (cse).

When GHC inlines code, you'll run side effects more often than anticipated.
Instead of running an |0 action once to allocate and initialize a resource, your
program will create a new resource each time the value is referenced. In
common cases, like using unsafePerformlO to create an IORef or an MVar it can
look like values aren’t being set when they should be. What'’s actually happen-
ing is that each time you reference the IORef or MVar you're getting a newly
initialized value instead of a shared value that you can write to and read from
the way you expect.

You can disable inlining with the NOINLINE pragma. This tells GHC that it
shouldn’t inline an expression even when its heuristics might otherwise tell
it that it should. You should almost always use NOINLINE anytime you use
unsafePerformlO with a top-level identifier.

Where inlining can cause your side effects to be run more often than intended,
let floating can cause them to be run less often than you intend. GHC uses
let floating to move expressions up to a higher scope when it notices that they
could be efficiently re-used. If an MVar or IORef is relocated because of let
floating it may look like they are being initialized with an incorrect value. This
happens because you're getting a shared reference with whatever value hap-
pened to be last written instead of a newly initialized reference. Let floating
can be hard to predict, and you can’t disable it on a per-function basis, but
it’s a good practice to disable it in any module that uses unsafePerformlO by
adding {-# OPTIONS_GHC -fno-full-laziness #-} to the top of your module declaration.

The last optimization we’ll look at that could break unsafePerformlO is called
common subexpression elimination, or CSE. This happens when the compiler

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

Puzzle 6. Do You Even Lift? ® 6

recognizes that you have the same expression being used multiple times and
it combines them. The practical impact is that you run your side effects less
often than anticipated, similar to let floating. GHC only does CSE in a few
specific circumstances, but it can be hard to predict. To avoid potential errors
you should add -fno-cse to the OPTIONS_GHC for your module, along side -fno-full-
laziness.

Avoiding Polymorphic Values

The last problem we need to be aware of when using unsafePerformlO is that it
can let us write type unsafe code. Without unsafePerformlO for example, we're
never able to get a hold of an I0Ref value where the type of value being refer-
enced can’t be inferred by the compiler. Using unsafePerformlO we're able to get
hold of an actual polymorphic IORef value that could hold any type. This allows
us to write an unsafe coercion function that we can use to turn a value of
any type into a value of any other type, potentially resulting in a runtime
crash:

src/HaskellBrainTeasers/UnsafeToTheMax/UnsafeCoerce.hs
{-# NOINLINE ref #-}

ref :: IORef a

ref = unsafePerformIO $ newIORef undefined

unsafeCoerce :: a -> b
unsafeCoerce from = unsafePerformIO $
writeIORef ref from >> readIORef ref

Further Reading

INLINE pragma in the GHC Users Guide
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/pragmas.html#inline-pragma

unsafePerformlO on Hackage
https://hackage.haskell.org/package/base-4.21.0.0/docs/System-10-Unsafe.html#v:unsafePer-

accursedUnutterablePerformIO Documentation
https://hackage.haskell.org/package/bytestring-0.12.2.0/docs/Data-ByteString-Inter-

Referential Transparency on the Haskell Wiki
https://wiki.haskell.org/index.php?title=Referential transparency

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FUnsafeToTheMax%2FUnsafeCoerce.hs
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/pragmas.html#inline-pragma
https://hackage.haskell.org/package/base-4.21.0.0/docs/System-IO-Unsafe.html#v:unsafePerformIO
https://hackage.haskell.org/package/base-4.21.0.0/docs/System-IO-Unsafe.html#v:unsafePerformIO
https://hackage.haskell.org/package/bytestring-0.12.2.0/docs/Data-ByteString-Internal.html#v:accursedUnutterablePerformIO
https://hackage.haskell.org/package/bytestring-0.12.2.0/docs/Data-ByteString-Internal.html#v:accursedUnutterablePerformIO
https://wiki.haskell.org/index.php?title=Referential_transparency
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

