Thy
Pragmatic

(5}
I%ggrarmners

Haskell Brain Teasers

Exercise Your Mind

Rebecca SKinnErey

Series editor: Miki Tebeka
Development editor: Michael Swaine

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Many Roads, One Destination
. J

src/HaskellBrainTeasers/Bismuth.hs
{-# LANGUAGE OrPatterns #-}
module HaskellBrainTeasers.Bismuth where

data Color = Black|White|Gray|Red|Green|Blue|Yellow|Purple|Orange
deriving Show

isAchromatic :: Color -> Bool
isAchromatic (Black;White;Gray) = True
isAchromatic (Red;Green;Blue;Yellow;Purple;0Orange) = False

main :: IO ()
main = print (isAchromatic Red) >> print (isAchromatic Gray)

Guess the Output

Before moving on to the next page, try to guess the output. Will
it compile? Will it finish running?

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FBismuth.hs
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

Puzzle 9. Many Roads, One Destination ® 4

The program will output
False
True

Discussion

This puzzle demonstrates a newer GHC language extension called Or Patterns.
Or patterns let you combine several otherwise identical pattern matches into
a single larger pattern. Without Or Patterns we would have needed to choose
between either a much more verbose implementation of our puzzle, or one
that risked misbehaving in the future.

As an example, we could have written a version of isAchromatic that explicitly
pattern matched on every color. This would have turned our two pattern
matches into nine pattern matches. More likely, we would have written our
function using a wildcard to save some typing:

src/HaskellBrainTeasers/Bismuth.hs
isAchromaticWildcard :: Color -> Bool
isAchromaticWildcard Black = True
isAchromaticWildcard White = True
isAchromaticWildcard Gray = True
isAchromaticWildcard _ = False

This implementation of our function works well today, but it might not always
behave as expected in the future. Imagine that we add two new achromatic
colors: LightGray and DarkGray. If we were diligent about explicitly pattern
matching on every color, the compiler would tell us that we now have an
incomplete pattern and point us to the offending function. This is useful, but
it means our already long function gets even longer. If, on the other hand, we
took a shortcut and use a wildcard then our two new colors would hit the
wildcard. The compiler wouldn’t warn us, and we’d suddenly find ourselves
claiming that neither LightGray nor DarkGray are achromatic.

As you can see in the puzzle, Or Patterns can help us get the best of both
worlds by making it easier to explicitly enumerate every case easier and less
verbosely.

Limitations

Although Or Patterns are useful and can let us avoid wildcards or partial
patterns, they do have some limitations that we need to work around in order

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FBismuth.hs
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

Discussion ¢ 5

to use them effective. Most notably: Or Patterns do not support binding vari-
ables or constraints.

Let’s start by taking a look at variable binding. In a normal pattern match we
can bind a variable to part of the pattern. For example, working with Either
values you can normally bind a variable to the Left or Right value. For example,
imagine that we want to write a function that takes a pair pair of Either values
and checks to see if they are “mirrors” of one another:

src/HaskellBrainTeasers/Bismuth/MirrorTest.hs

isMirrored :: (Either Int Int, Either Int Int) -> Bool
isMirrored (Left x, Right y) = x ==y

isMirrored (Right x, Left y) = x ==

isMirrored ((Left _, Left _); (Right _, Right _)) = False

In this example, x and y are variables we’re binding to the Left and Right values
inside of our patterns. We can do this in the example, because the first two
patterns we're using are not Or Patterns. In the final pattern we're using an
Or Pattern to match the case when we get two left or two right values, but
we're not binding a variable in that case so this also works as expected.

Looking at the example, you might notice that our first two patterns both
implement the same logic, and consider wanting to combine them into an Or
Pattern as well. For example:

src/HaskellBrainTeasers/Bismuth/MirrorTest.hs

isMirrored :: (Either Int Int, Either Int Int) -> Bool
isMirrored ((Left x, Right y); (Right x; Left y)) = x ==y
isMirrored ((Left {}, Left {}); (Right {}, Right {})) = False

Unfortunately this is where we run into the limitation on binding variables
in Or Patterns. In this example we’'ve combined our first two patterns into a
single Or Pattern, including attempting to bind x and y. Since we need to bind
variables in our pattern, we’ll have to go back to our earlier example and
reserve the Or Pattern only for the fall-through case.

Variable binding is something visible that we do intentionally when we need
a value. Although we may wish to bind variables in an Or Pattern, it’s clear
when we're trying to do so and easy enough to revert back to matching pat-
terns individually. The lack of support for binding constraints in Or Patterns
is a little trickier, since this is something the compiler often does for us
implicitly. Let’s look at an example of some code we might write that works
as expected without Or Patterns:

src/HaskellBrainTeasers/Bismuth/ValueTypes.hs
{-# LANGUAGE OrPatterns #-}
{-# LANGUAGE GADTs #-}

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FBismuth%2FMirrorTest.hs
http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FBismuth%2FMirrorTest.hs
http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FBismuth%2FValueTypes.hs
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

Puzzle 9. Many Roads, One Destination ¢ 6

module HaskellBrainTeasers.Bismuth.ValueTypes where
import Data.Word

newtype Each = Each Word32 deriving (Num, Show)
newtype Pounds = Pounds Double deriving (Num, Fractional, Show)

data Inventory a where
Toasters :: Inventory Each
Iguanas :: Inventory Each
EngineGrease :: Inventory Pounds
Antimatter :: Inventory Pounds

inventory :: Inventory a -> a
inventory Toasters = 0
inventory Iguanas = 0
inventory EngineGrease = 0
inventory Antimatter = 0

In this example we have an Inventory type that represents different items we
might carry in a shop. We can define our store’s inventory at a moment in
time by providing a function from the inventory item name to the amount
that we have in stock. Our current inventory says that we’re out of stock on all
of our items.

Knowing about Or Patterns, you might notice that since our inventory items
are symbolic and we don’t need to bind a variable, this could be a good
opportunity to use Or Patterns. After all, this is exactly the kind of problem
where we might want to avoid a wildcard pattern that might not be correct
for new items we add to our inventory. Unfortunately, putting everything into
a single Or Pattern doesn’t work:

src/HaskellBrainTeasers/Bismuth/ValueTypes.hs
inventory :: Inventory a -> a
inventory (Toasters; Iguanas; EngineGrease; Antimatter) = 0

Unfortunately this won’t work. The problem is that the type of value we return
depends on the specific constructor we’'ve matched on. We count our inventory
by Each Toasters or Ignuanas, but by how many Pounds we have in stock of Engine-
Grease or Antimatter. Your first thought might be to use two Or Patterns: one for
Each items and one for Pounds items:

src/HaskellBrainTeasers/Bismuth/ValueTypes.hs
inventory :: Inventory a -> a

inventory (Toasters; Iguanas) = 0
inventory (EngineGrease; Antimatter) = 0

Disappointingly, this still won't work. Normally, when pattern match on a
GADT the compiler will generate a constraint that tells us what type we’re
dealing with. In our working example, when we pattern match on Toasters we

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FBismuth%2FValueTypes.hs
http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FBismuth%2FValueTypes.hs
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

Further Reading ® 7

introduce a constraint that says the type of a has to be Each. Since Or Patterns
don’t bind constraints, we lose this information and the compiler can’t be
sure what we’re returning is correct.

Or Patterns are a new feature as of GHC 9.12 and they may become more
capable in future GHC versions. Today they can be very useful for functions
that need to match on simple sum types with many common codepaths, but
their limitations mean that they aren’t always a viable choice even when they
seem potentially useful.

Further Reading

Or Patterns in the GHC user manual

« Click HERE to purchase this book now. discuss

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/or_patterns.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/or_patterns.html
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

