
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Puzzle 15

Round Trip Tickets

src/HaskellBrainTeasers/RoundTripTicket.hs
module HaskellBrainTeasers.RoundTripTicket where
roundTrip ::

(Show a, Show b) => String -> a -> b -> String
roundTrip maxLenStr a b =

take maxLen $ show (hither $ thither a, hither $ thither b)
where

maxLen = hither maxLenStr
hither = read
-- refactored from @thither x = show x@ to avoid hlint
-- warnings to eta reduce
thither = show

main :: IO ()
main = putStrLn $ roundTrip "5" 10 10

Guess the Output

Before moving on to the next page, try to guess the output. Will
it compile? Will it finish running?

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/haskellbt/code/src%2FHaskellBrainTeasers%2FRoundTripTicket.hs
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

The program will fail to compile with an error
/tmp/OhEmDashXXX2728112-1.hs:9:60: error: [GHC-25897]

" Couldn't match expected type 'a' with actual type 'b'
'b' is a rigid type variable bound by

the type signature for:
roundTrip :: forall a b.

(Show a, Show b) =>
String -> a -> b -> String

at /tmp/OhEmDashXXX2728112-1.hs:(6,1)-(7,48)
'a' is a rigid type variable bound by

the type signature for:
roundTrip :: forall a b.

(Show a, Show b) =>
String -> a -> b -> String

at /tmp/OhEmDashXXX2728112-1.hs:(6,1)-(7,48)
" In the first argument of 'thither', namely 'b'
In the second argument of '($)', namely 'thither b'
In the expression: hither $ thither b

" Relevant bindings include
thither :: a -> String (bound at /tmp/OhEmDashXXX2728112-1.hs:15:5)
b :: b (bound at /tmp/OhEmDashXXX2728112-1.hs:8:23)
a :: a (bound at /tmp/OhEmDashXXX2728112-1.hs:8:21)
roundTrip :: String -> a -> b -> String

(bound at /tmp/OhEmDashXXX2728112-1.hs:8:1)
|

9 | take maxLen $ show (hither $ thither a, hither $ thither b)
| ^

Discussion
In this puzzle a well-intentioned refactor has caused havoc by summoning
the dread monomorphism restriction. The monomorphism restriction, and
its close friend the ambiguous type error, are the cause of many completely
safe refactors that are immediately followed by CI failures. Thankfully, by
carefully studying the nuances of the monomorphism restriction and how
typeclass resolution works, you can confidently continue to make this exact
mistake for the rest of your career.

Let’s start by taking a look at what the monomorphism restriction is, and
when it applies to your code. Afterwards, we’ll look at a few common ways
that you can accidentally trip over it in your programs, and what to look for.

Puzzle 15. Round Trip Tickets • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

What is the Monomorphism Restriction?
The monomorphism restriction prevents GHC from inferring polymorphic
types in some cases. Although the specifics of the grammar and when the
restriction applies are outlined in the Haskell 2010 Report, the simplest way
to understand it is that it applies when you bind variables in let expressions
and where clauses. One of the most surprising things about the monomorphism
restriction is that it only applies to bindings without arguments to the left of
the equals sign. It’s much easier to understand in code, so let’s look at a few
examples:

-- monomorphism restriction applies because value is an ordinary binding
let value = somethingCool "George" "Spaceships" in ...

-- monomorphism restriction doesn't apply, because cases aren't simple bindings
case somethingCool "George" "Spaceships" of { value -> ... }

-- monomorphism restriction applies, increment is a simple binding of a function
let increment = (+1)
let increment = \n -> 1 + n

-- monomorphism restriction doesn't apply, there is an explicit type annotation
let

increment :: Num a => a -> a
increment = (+1)

-- monomorphism restriction doesn't apply, arguments appear left of =
let increment n = 1 + n
let increment _unused = \n -> 1 + n

Notably, the monomorphism restriction means that eta reduction, or eta
expansion (fancy people speak for adding or removing arguments) can change
whether your program compiles. For example:

-- monomorphism restriction applies
let display = show
let parse = read

-- monomorphism restriction doesn't apply
let display val = show val
let parse input = read input

Somewhat less obviously, the monomorphism restriction is also disabled
when you turn on the NoMonomorphismRestriction language extension.

Why is it a Problem?
The most subtle problem with the monomorphism restriction is that innocuous
and seemingly stylistic refactors can cause your program to suddenly fail to
compile. If you do somehow notice that your program has failed to compile,
you may also notice that the errors have an unfortunate tendency to say

• Click HERE to purchase this book now. discuss

Discussion • 5

http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

nothing about the monomorphism restriction. Instead, the monomorphism
restriction tends to cause type unification and ambiguous type errors.

Type unification errors most often occur when we eta reduce and suddenly
find out that our newly pointfree code has chosen violence. For example:

showPair :: (Show a, Show b) => a -> b -> (String, String)
showPair a b = (display a, display b)

where display = ("displays as: " <>) . show

Since display has no arguments to the left of the equals sign the monomorphism
restriction kicks in and says that we have to pick a single concrete type. We
call it with a first, so the compiler infers the type display :: a -> String. When we
try to call display b the compiler helpfully lets us know that it can’t prove that
a is equal to b. If we rewrite this in a less pointless style with an argument on
the left hand side, then the monomorphism restriction no longer applies and
the code works as expected:

where display x = "displays as: " <> show x

Programmers, of course, hate nothing more than consistency. As you might
expect, eta expansion can also confound the monomorphism restriction.
Instead of type equality errors, eta expansion tends to result in ambiguous
type errors. For example:

showMore :: (Monoid a, Show a) => a -> String
showMore a = display a <> display mempty

where display x = show x

In this example, having faithfully learned the lesson that we should always
eta expand, we’ve created a pointful version of display with an inferred type
of display :: Show a => a -> String. Since the function is polymorphic each time we
call it the compiler will try to pick out the appropriate type. Our first call is
at type a, which has a Show instance and so everything goes as expected. Our
second call passes in mempty, but that could be any type with a Monoid instance.
Since display is polymorphic our earlier call does nothing to narrow down which
type we’re trying to use and the compiler eventually gives up and asks for
help. A quick and apparently not so pointless pointfree refactor and the
monomorphism restriction kicks in and saves our program:

where display = show

Real World Tips and Tricks
The examples of eta expansion and reduction we’ve seen aren’t entirely con-
trived, these sorts of problems happen all the time during real world refactors.
One of the most common scenarios is when you factor something out of a let

Puzzle 15. Round Trip Tickets • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

or where binding to the top level and add an argument to pass in a value that
had previously been in scope. That argument disables the monomorphism
restriction and suddenly you find yourself with bonus type errors.

There are, thankfully, better ways of addressing this problem than stochasti-
cally permuting between pointfree and pointful styles. Visible type applications,
for example, can neatly solve the problem of ambiguity:

showMore :: forall a. (Monoid a, Show a) => a -> String
showMore a = display a <> display (mempty @a)

where display x = show x

Further Reading
The Monomorphism Restriction in The Haskell 2010 Report :
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-930004.5.5

The Monomorphism Restriction on the Haskell Wiki : https://wiki.haskell.org/
index.php?title=Monomorphism_restriction

The MonoLocalBinds Extension : https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/
let_generalisation.html

The NoMonomorphismRestriction Extension : https://ghc.gitlab.haskell.org/ghc/doc/
users_guide/exts/monomorphism.html#extension-MonomorphismRestriction

• Click HERE to purchase this book now. discuss

Further Reading • 7

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-930004.5.5
https://wiki.haskell.org/index.php?title=Monomorphism_restriction
https://wiki.haskell.org/index.php?title=Monomorphism_restriction
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/let_generalisation.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/let_generalisation.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/monomorphism.html#extension-MonomorphismRestriction
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/monomorphism.html#extension-MonomorphismRestriction
http://pragprog.com/titles/haskellbt
http://forums.pragprog.com/forums/haskellbt

