
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 8

Build Obstacles and Collision Detection
Many games require collision detection—a process of detecting when one object
has “hit” another object. For example, in Flappy Dragon, the dragon crashes
into walls. In space shooter games, lasers obliterate monsters, and the mon-
sters’ weapons damage the player. In physics games, collision detection is
used to determine bounce and movement. The list is endless. Collision
detection is important, and it’s a good service to offer in a game making library.

At the moment, Flappy Dragon is very inefficient in detecting collisions. On
each frame, the distance between Flappy and every wall is calculated. If the
distance is sufficiently small, a collision has occurred and the game ends.
Flappy Dragon can get by with inefficient collision detection because there
aren’t very many potentially colliding objects. However, increasing the game’s
complexity would lead to a rapid drop in performance.

In this chapter, you’ll follow a common journey for the library developer. You’ll
identify a performance problem and construct a test-bed, focused on the
particular problem you need to solve. You’ll then incrementally test algorithmic
improvements, graphing the results. After you have a good solution, you’ll
convert it into generic library-friendly code and update Flappy Dragon to use
it.

Let’s get started by building a collision test-bed.

Building a Collision-Detection Test-bed
Often, when you’re optimizing one element of a game or engine it’s helpful to
create a test-bed that emphasizes the problem you are trying to optimize.
Rather than add thousands of objects to Flappy Dragon—and then take them
away again, it’s easier to build an example designed to stress the feature you
are optimizing. You’re going to set Flappy to one side for a moment, and build

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

a billiards table with an easy way to add more and more balls. The balls collide
with one another, and the test-bed reports statistics—allowing you to measure
your optimization progress.

Let’s build a billiards table in hyperspace. Balls spawn on the table in a ran-
dom position, with a random velocity. If balls collide, they’re propelled away
from the ball with which they collide. The table wraps at the edges—if a ball
goes off one side of the screen, it reappears on the opposite side of the screen.

The basic framework of the simulation is similar to the other games you’ve
created, so rather than fill pages with code listings, you can download the
code from the accompanying source folder: code/FlappyCollision/bouncy. There are
some parts of the program that differ from what you’ve written before, so let’s
look at them before moving on to the next step.

The show_performance() uses Bevy’s Diagnostics plugin to obtain performance details:

FlappyCollision/bouncy/src/main.rs
fn show_performance(

mut egui_context: egui::EguiContexts,
diagnostics: Res<DiagnosticsStore>,❶
mut collision_time: ResMut<CollisionTime>,
mut commands: Commands,
mut rng: ResMut<RandomNumberGenerator>,
assets: Res<AssetStore>,
query: Query<&Transform, With<Ball>>,
loaded_assets: Res<LoadedAssets>,

) {
let n_balls = query.iter().count();❷
let fps = diagnostics❸

.get(FrameTimeDiagnosticsPlugin::FPS)

.and_then(|fps| fps.average())

.unwrap();
collision_time.fps = fps;
egui::egui::Window::new("Performance").show(

egui_context.ctx_mut(),
|ui| {
let fps_text = format!("FPS: {fps:.1}");❹
let color = match fps as u32 {❺

0..=29 => Color32::RED,
30..=59 => Color32::GOLD,
_ => Color32::GREEN,

};
ui.colored_label(color, &fps_text);
ui.colored_label(

color,
&format!("Collision Time: {} ms", collision_time.time),

);
ui.label(&format!("Collision Checks: {}", collision_time.checks));

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwmrust/code/FlappyCollision/bouncy/src/main.rs
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

ui.label(&format!("# Balls: {n_balls}"));
if ui.button("Add Ball").clicked() {❻

println!(
"{n_balls}, {}, {}, {:.0}",
collision_time.time, collision_time.checks, collision_time.fps

);
spawn_bouncies(1, &mut commands, &mut rng, &assets,

&loaded_assets);
}
if ui.button("Add 100 Balls").clicked() {

println!(
"{n_balls}, {}, {}, {:.0}",
collision_time.time, collision_time.checks, collision_time.fps

);
spawn_bouncies(100, &mut commands, &mut rng, &assets,

&loaded_assets);
}
if ui.button("Add 1000 Balls").clicked() {

println!(
"{n_balls}, {}, {}, {:.0}",
collision_time.time, collision_time.checks, collision_time.fps

);
spawn_bouncies(1000, &mut commands, &mut rng, &assets,

&loaded_assets);
}

},
);

}

❶ Request Bevy’s Diagnostics type as a resource.

❷ Count the number of balls being simulated.

❸ Diagnostics provides a number of statistics. You’re requesting the frames-
per-second count as an average of recent frames. An average is useful
because the actual number can fluctuate.

❹ Format the FPS to one decimal place.

❺ Change the FPS color to indicate "good," "warning," or "terrible" using the
colors green, orange, and red, respectively.

❻ Add buttons to the user interface to add more balls to the simulation.
Provide increments of 1, 100 and 1,000 balls.

bounce_on_collision() is another useful function. When two balls collide, it calcu-
lates the vector between them and sends a ball away from the object with
which it collided. The function runs for both balls, providing relatively realis-
tic—but not perfect—collision:

• Click HERE to purchase this book now. discuss

Building a Collision-Detection Test-bed • 5

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

FlappyCollision/bouncy/src/main.rs
fn bounce_on_collision(

entity: Entity,
ball_a: Vec3,
ball_b: Vec3,
impulse: &mut EventWriter<Impulse>,

) {
let a_to_b = (ball_a - ball_b).normalize();❶
impulse.send(Impulse {

target: entity,
amount: a_to_b / 8.0,❷
absolute: false,

});
}

❶ Bevy’s Vec3 type implements the Sub trait, allowing you to subtract one
vector from another. Normalizing is an operation that scales the total
distance represented by the vector (from zero) to 1.0.

❷ Rather than try to calculate a perfect elastic collision—a topic on which
whole books have been written—you’re applying a force based on the
direction of the collision.

You can illustrate the bounce_on_collision() function’s effect like this:

Vector between balls

Vector between balls

Overlap Occurs Applying the vector adds
an impulse to undo
the overlap

Since you’re applying an impulse—not an absolute force—momentum is pre-
served, and the result is a convincing bounce.

Finally, the collisions() queries each ball against every other ball, and detects if
they overlap:

FlappyCollision/bouncy/src/main.rs
fn collisions(

mut collision_time: ResMut<CollisionTime>,
query: Query<(Entity, &Transform), With<Ball>>,
mut impulse: EventWriter<Impulse>,

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwmrust/code/FlappyCollision/bouncy/src/main.rs
http://media.pragprog.com/titles/hwmrust/code/FlappyCollision/bouncy/src/main.rs
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

) {
// Start the clock
let now = std::time::Instant::now();

// Naïve Collision
let mut n = 0;
for (entity_a, ball_a) in query.iter() {

query
.iter()
.filter(|(entity_b, _)| *entity_b != entity_a)
.filter(|(_, ball_b)| {

n += 1; // Count the collision check
ball_a.translation.distance(ball_b.translation) < 8.0

})
.for_each(|(_, ball_b)| {

bounce_on_collision(
entity_a,
ball_a.translation,
ball_b.translation,
&mut impulse,

);
});

}

// Store the time result
collision_time.time = now.elapsed().as_millis();
collision_time.checks = n;

}

The collision function is equivalent to the collision detection used in Flappy
Dragon. Let’s start by running the example:

• Click HERE to purchase this book now. discuss

Building a Collision-Detection Test-bed • 7

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Now that you have a working test-bed, you can begin to analyze and optimize
the collision detection system.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

