
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 7

Teach Your Dragon to Fly
In this chapter, you’ll learn two important aspects of 2D games: animation
and physics.

Animation brings your game to life by making sprites change over time, pro-
viding visual cues as to what’s happening in the game. The human eye is very
sensitive to movement, and static scenes don’t attract the same attention as
animated scenes. Notice that with most games, almost everything is animated.

Physics also brings games to life. Players intuitively understand physics, and
somewhat-accurate modeling of how the world works makes it easier for
players to interact with your game.

Physics and animation share a common feature: time. It shouldn’t matter
how fast your player’s PC is running, animations need to remain smooth and
consistent. More importantly, running a game on a fast PC shouldn’t speed
up an entity’s movement within a simulation, because in a few years, as
computers get faster, your “odler” game may run too fast to be playable.

Adding Frame-Based Animation
Frame-based animation works similarly to paper flip books: each page displays
a picture, more precisely, a slightly different image on each page. As you flip
through the book, you see the characters move. However, each page (“frame”)
is a static image. Unlike flip books, frame-based animation can reuse images
without adding extra pages.

Frame-based animation can also be tied to instructions, such as “play this
sound when this frame appears,” and it’s a lot easier to switch between ani-
mations on a computer than it is in a printed flip-book.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Let’s get started by using the full set of animation frames for Flappy the
Dragon. Bevoulin (on Open Game Art) includes four animation frames for the
dragon:1

You can divide these images into frames, where each frame is the same size,
essentially making a “digital” page in a flip book:

Frame 0 Frame 1 Frame 2 Frame 3

Looking at these frames, you don’t want to simply repeat them—if you jump
from frame 3 to frame 0, the dragon’s wings will go from “all the way up” to
“all the way down” with no in-between. Instead, the correct render order is 0,
1, 2, 3, 2, 1 (repeat). This pattern provides a smooth “flapping” cycle, with the
wings working their way up, and then down again, mimicking a realistic use
of wings.

Download code/FlappyAnimation/flappy_dragon_base/flappy_sprite_sheet.png and place the
file in the flappy_dragon/src/assets directory. This file has been scaled to match
the 1024×768 resolution of your game.

There are multiple logical layers to an animation set:

• The image itself, containing every frame. Bevy represents this as an Image,
just like your other game sprites.

• A grid, placed over the sprite image to provide identically sized sub-images.
Bevy names this your SpriteSheet. Each frame in the image above is a sep-
arate sprite sheet entry.

• Animations, which group animations together by name for easy access.
You’ll create a type for these named PerFrameAnimation.

• Each animation frame—containing the index of the sprite to use (from
the SpriteSheet), a duration for the frame, and one or more actions to perform
when the frame is active.

1. https://opengameart.org/content/flappy-dragon-sprite-sheets

• 4

• Click HERE to purchase this book now. discuss

https://opengameart.org/content/flappy-dragon-sprite-sheets
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Let’s extend the asset manager to handle frame-based animations.

Defining Sprite Sheets
The first step is to add SpriteSheet handling to your asset system. You used a
SpriteSheet in Playing Pig, on page ?

Open my_library/src/bevy_assets/asset_manager.rs and add a new entry to the AssetType
enumeration:

FlappyAnimation/my_library/src/bevy_assets/asset_manager.rs
#[derive(Clone)]
pub enum AssetType {

Image,
Sound,
SpriteSheet{tile_size: Vec2, sprites_x: usize, sprites_y: usize},➤

}

Bevy needs to know a few things about the sprite sheet, so they’re included
in this type:

• The size of each frame (in pixels), represented by tile_size—a Vec2 containing
an x and y value.

• The number of sprites in the x dimension (columns), represented by
sprites_x.

• The number of sprites in the y dimension (rows), represented by sprites_y.

Next, just like the image and audio asset types, you need to add a function
to add a sprite sheet to the requested assets list. Add the new function inside
the AssetManager implementation, after add_image():

FlappyAnimation/my_library/src/bevy_assets/asset_manager.rs
pub fn add_sprite_sheet<S: ToString>(

mut self,
tag: S,
filename: S,
sprite_width: f32,
sprite_height: f32,
sprites_x: usize,
sprites_y: usize,

) -> anyhow::Result<Self> {
let filename = filename.to_string();
AssetManager::asset_exists(&filename)?;
self

.asset_list

.push((tag.to_string(), filename, AssetType::SpriteSheet{
tile_size: Vec2::new(

sprite_width,
sprite_height),
sprites_x,

• Click HERE to purchase this book now. discuss

Adding Frame-Based Animation • 5

http://media.pragprog.com/titles/hwmrust/code/FlappyAnimation/my_library/src/bevy_assets/asset_manager.rs
http://media.pragprog.com/titles/hwmrust/code/FlappyAnimation/my_library/src/bevy_assets/asset_manager.rs
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

sprites_y,
}));

Ok(self)
}

Your library consumer can now request that a sprite sheet be loaded in the
same way as other assets. Next, you need to add the code to actually create
a Bevy TextureAtlas.

Building Sprite Sheets
Bevy’s Sprite Sheet documentation shows that creating a sprite sheet is a
two-step operation. The first step loads an image, just like your previous
image loading code. The second step creates a TextureAtlas structure, which
refers to the image, has a Handle, and won’t appear in the list of loaded assets.
TextureAtlass are a meta-asset. Describing an interaction with physical assets
depends upon the asset, but they don’t actually occupy a slot in the asset
manager’s data store.

The difficult part with creating a meta-asset is that you have to first load the
base asset—and then initialize the meta-asset, using it. The meta-asset then
gains a Handle, but never has a Handle<LoadedUntypedAsset>—because no loading
stage was ever invoked. This requires that the asset system load the base
image—and store everything required to build the texture atlas after it has
been loaded. Start by creating a new FutureAtlas type in
my_library/src/bevy_assets/asset_store.rs:

FlappyAnimation/my_library/src/bevy_assets/asset_store.rs
pub(crate) struct FutureAtlas {

pub(crate) tag: String,
pub(crate) texture_tag: String,
pub(crate) tile_size: Vec2,
pub(crate) sprites_x: usize,
pub(crate) sprites_y: usize,

}

This type will be used to store atlases that are awaiting creation. Next, extend
your AssetStore type to include the list of future atlases and a HashMap to store
atlases once they have been created:

FlappyAnimation/my_library/src/bevy_assets/asset_store.rs
#[derive(Resource)]
pub struct AssetStore {

pub(crate) asset_index: HashMap<String, Handle<LoadedUntypedAsset>>,
pub(crate) atlases_to_build: Vec<FutureAtlas>,➤

pub(crate) atlases: HashMap<String, Handle<TextureAtlas>>,➤

}

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwmrust/code/FlappyAnimation/my_library/src/bevy_assets/asset_store.rs
http://media.pragprog.com/titles/hwmrust/code/FlappyAnimation/my_library/src/bevy_assets/asset_store.rs
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

While you’re in the file, add a function to retrieve texture atlases by name.
Add the code inside the impl AssetStore block:

FlappyAnimation/my_library/src/bevy_assets/asset_store.rs
pub fn get_atlas_handle(&self, index: &str) -> Option<Handle<TextureAtlas>>
{

if let Some(handle) = self.atlases.get(index) {
return Some(handle.clone());

}
None

}

Now that the AssetStore supports texture atlases, you need to add some logic
to create them. Open the asset_manager.rs file, Add the following code above the
default option (_ =>):

FlappyAnimation/my_library/src/bevy_assets/asset_manager.rs
match asset_type {

AssetType::SpriteSheet { tile_size, sprites_x, sprites_y } => {
// Sprite Sheets require that we load the image first, and defer
// sheet creation to the loading menu - after the image has loaded
let image_handle = asset_server.load_untyped(filename);❶
let base_tag = format!("{tag}_base");❷
assets
.asset_index
.insert(base_tag.clone(), image_handle);❸

// Now that its loaded, we store the future atlas in the asset store
assets.atlases_to_build.push(FutureAtlas {❹
tag: tag.clone(),
texture_tag: base_tag,
tile_size: *tile_size,
sprites_x: *sprites_x,
sprites_y: *sprites_y,

});
}

❶ Load the underlying image, just as you did for images previously.

❷ You want to use a different tag for the underlying image. You can’t have
duplicate tags in a HashMap.

❸ Insert the base image, identified by the new tag.

❹ Add the atlas’ details to the future texture atlases list you created.

• Click HERE to purchase this book now. discuss

Adding Frame-Based Animation • 7

http://media.pragprog.com/titles/hwmrust/code/FlappyAnimation/my_library/src/bevy_assets/asset_store.rs
http://media.pragprog.com/titles/hwmrust/code/FlappyAnimation/my_library/src/bevy_assets/asset_manager.rs
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

