Advanced
Hands-on Rust

Level up
Your

Herbert Wolverson
edited by Tammy Coron

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Preface

Are you ready to accelerate your Rust development?

In this book, you'll gain intermediate to advanced Rust skills as you build a
game development toolkit. Each chapter includes hands-on, practical devel-
opment, creating tools to help you unleash your creativity and quickly build
your own games.

As you work through this book, you'll:

¢ Create reusable libraries and improve your code with testing, benchmark-
ing and optimization.

e Discover how to unlock the power of Rust’s trait and generic meta-pro-
gramming systems to create code that adapts to fit your needs.

e Customize libraries with feature flags and language syntax with macros.
e Master concurrency with threads and asynchronous programming.

¢ Find out how to structure your games with reusable state management,
menus, user interface elements and asset management.

e Learn how to quickly build games with reusable physics and collision
detection.

e Make your games pop with animations, particles and rendering tricks
including parallax layering.

This book is the ideal follow-up to take the skills you gained in Hands-on Rust

basic Rust.

Who Should Read this Book?

If you've just completed Hands-on Rust, this book is the next step. However,
it doesn’t require that you've read Hands-on Rust. If you have mastered basic
Rust and want to take your skills to the next level, this book can help you

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Preface ® iv

discover: benchmarking, testing, optimization, library design, generic program-
ming, macros, and designing reusable code to make your project develop-
ment—game or otherwise—easier.

What'’s in this Book?

This book teaches about library design, gradually introducing you to interme-
diate and advanced Rust concepts. Each chapter contains hands-on, practical
examples of the concepts you are learning—made fun by using them to build
and improve games.

In Chapter 1, Set up Rust and the Bevy Engine, on page ?, youll ensure
that you have a working Rust setup, and setup the Bevy Engine.' You'll build
a basic example—moving a character around the screen—and will become

familiar with the basic concepts that make the Bevy Engine tick.

In Chapter 2, Create and Test Your First Library, on page ?, you'll create
your first Rust library. Starting with “hello, library world,” you'll build up to
generating random numbers as a library service. You’'ll unit test your library
functions, and integration test your systems by building a simple dice game.
This builds up to your first interaction with generic functions: adapting your
random number generation to fit the type of data requested by the function

caller.

Moving on to Chapter 3, Optimize and Benchmark Your Library, on page ?,
you'll use Rust and Criterion to benchmark your random number generation
library. Benchmarking allows you to prove that your optimizations helped
and is an important part of software development. Once you've established
baseline performance, you'll use feature flags to offer different random number
generation algorithms to the library consumer and will benchmark each one.
Once you've selected an appropriate default—the fastest algorithm—you’ll
wrap your random number generator in a Bevy plugin and offer different
scheduling and mutability characteristics with the use of interior locking.
Once again, you’'ll unit test and integration test your library with the Pig dice
game.

In Chapter 4, Document Your Library, on page ?, you'l focus on another
important aspect of library development: documentation. Rust includes tools
to make documenting libraries easier—even unit-testing your documentation
examples. If you're ever going to share your library, good documentation is

essential.
1. https://bevyengine.org/

« Click HERE to purchase this book now. discuss

https://bevyengine.org/
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

What's in this Book? ¢ v

Chapter 5, Build Reusable Game State Management, on page ? starts by
creating a Bevy version of Flappy Dragon. Since most arcade-style games
require a main menu and game over screen, this chapter walks you through
creating a generic system for loading menus and applying them to games you
create. State management can quickly become complicated, with states
requiring sub-states to track progress through more complicated games.
Because even the generic state-management syntax is becoming complicated,
you’ll create macros to create a more usable syntax. You'll then apply what

you've learned to both Flappy Dragon and Pig.

Chapter 6, Manage Your Game Assets, on page ? continues the theme of
automating common tasks with library code by tackling game assets. You'll
build an asset manager that lets you specify which sprites and sounds to
load up-front and provides clear error messages if an asset is unavailable.
Bevy loads assets asynchronously in the background. This can be wonderful
for large titles, but it can also lead to embarrassing pauses as your game
finishes loading a sprite and it suddenly appears on the screen. This chapter
will teach you how to avoid this by wrapping your asset loading in a loading
screen, showing progress as assets load—and not running the game before

everything is ready.
In Chapter 7, Teach Your Dragon to Fly, on page ?, you'll flesh out Flappy

Dragon. You'll combine your asset system with per-frame animation and
timers to provide smoothly rendered animations to the game. The chapter
will teach you a few “tricks,” such as layering sprites and scrolling graphics
at different speeds and scales to provide a “parallax” effect—giving the player
an impression of forward movement. Simple movement will be replaced with
the beginnings of a time-independent physics simulation, ensuring that your
game runs the same on old or new computers. These are all useful techniques,
so they’ll be wrapped in library code and made available for all of your future

games.

Chapter 8, Build Obstacles and Collision Detection, on page ? continues
the physics theme. Instead of hard-coding collision logic, yowll build a
generic collision detection system that allows you to create events whenever
entities of different types overlap, allowing you to expand Flappy Dragon’s
gameplay and easily provide collision detection in your games. Simply com-
paring each entity’s position and “hit box” with every other entity can be time

consuming; this chapter will explore different ways to optimize the process.

Changing gears a bit, the (as yet) unwritten Chapter 10, Welcome to Mars Base
One, introduces a new game: Mars Base One. Mars Base One is a physics-
based game in which you fly a spaceship around a colony on Mars, as you

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Preface vi

try to avoid crashing into walls and rescue colonists. You'll stress test your
random number generator by procedurally generating a colony, guaranteeing
different gameplay each time, and using “seeds” to allow you to use a fixed
design while debugging.

In the (as yet) unwritten Chapter 11, Build a Mining Outpost on Mars, , you'll
optimize both your library and Mars Base One. Level creation takes some
time, so rather than “hitch” the game during level generation, you'll spin level-
generation off to a thread and use synchronization primitives to start the
game once the level is available. Rendering thousands of wall pieces is also
slow, so you'll apply some optimization techniques to combine the walls into
a single render mesh, rendering the level thousands of times faster.

the (as yet) unwritten Chapter 12, Add Miners and Energy Shields, will flesh
out Mars Base One and teach you some more rendering tricks. You'll add
colonists to rescue, particle effects to convey a greater sense of motion and
activity, and a Heads-Up Display (HUD) to better convey progress and game
status. Your ship will gain a shield, so you don’t die so quickly. At the end of
the chapter, Mars Base One is a complete game.

In the (as yet) unwritten Chapter 13, Build a High Score Server, , you'll integrate
your game with the Internet. You'll build a high-score server, accepting scores
from people who play your game, and providing a list of high scores to display
on the main menu. In the process, you’ll build full round-trip serialization
and deserialization, work with TCP sockets and safely transmit and receive
data from other computers. You'll also practice some safe error handling
techniques; the server isn’t always available, and random people might send
you malicious data.

the (as yet) unwritten Chapter 14, Share Your Library, focuses on sharing
your library with others. Learn about licensing, publishing your library—or
sharing it via Github—and gain a good idea of what’s required to maintain
an open source library.

What’s not in this Book?

This book does not include the basics of getting started with Rust. If you need
to start at the beginning, Hands-on Rust is a great start. This book also doesn’t
contain very advanced Rust—you won’t learn the intricacies of directly man-
aging memory, transmuting types, or working with cutting-edge features such
as Generally Associated Types (GATSs).

If you're an experienced Rust developer and want to learn more about struc-
turing games or using the Bevy Engine, this book can still help you.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

How to read this Book ® vii

How to read this Book

If you're coming from Hands-on Rust, you'll want to read this book in order.
If you're an experienced Rust developer, you'll probably want to skim some
of the more introductory sections and focus on the areas you need to learn.

Tutorials are as much about the journey as the destination. Working through
this book should give you ideas and inspire you to create other games and
programs. Building generic library toolkits is a great way to accelerate your
development; whenever you have a new idea, you no longer need to spend a
lot of time writing boilerplate, you can reuse your previous work without
resorting to copy and paste.

Conventions Used in this Book

The code accompanying this book is wrapped in a Rust workspace.
Workspaces allow you to combine several projects into a single code-base,
and when you compile an example, the resulting build reuses dependencies.
Without a workspace, every project would require its own copy of Bevy and
all of its dependencies, which can lead to using a huge amount of disk space.

The code is divided into directories as follows:

root
/example name (e.g. FirstLibraryCreate)
/src --- the source code for this example
/assets --- game assets required for this example
Cargo.toml --- build information for this example
/src --- a simple root program that reminds you to run an
example, rather than the workspace as a whole.
Cargo.toml --- the master workspace control, listing all projects.

You can run code examples by navigating to example_name and typing cargo run
for programs, and cargo test for libraries.

Rust doesn’t permit multiple projects of the same name to exist within a
workspace. Because of this restriction, you™ll find that some projects have a
slightly different name inside their Cargo.toml descriptions. As you work through
building my library, the example code will change the name from my_library to
my_library_benchmark as you progress through each stage of creating my library.
You don’t need to change the names in your source code unless you explicitly
want to match the example code.

When a file was created in a previous part of the book and a later example
makes changes, changes have been highlighted with an arrow. For example:

fn do_something() {

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Preface * viii

> add_this_function();
}

When a file has changed and requires that you remove an entry, a comment
is added:
fn do_something() {

> // remove: add this function();

}

Source Code for this Book

(To be updated with a link to the GitHub repo and PragProg source download)

Online Resources
Here are some online resources that can help you:

e Rust By Example provides a good, example-driven introduction to the
Rust Language.”

e The Rust Programming Language supplies in-depth concepts and tutorials
to learn the finer details of Rust. It is also available online.”

e The Rust Standard Library documentation provides detailed descriptions
of everything found in Rust’s std library. It’s a great reference when you
can’t remember how something works.*

e The Unofficial Bevy Cheat Book is a great help when working the Bevy
engine.5

e Beuvy - The Book provides a lot of great documentation for the Bevy engine.’

Wrapping Up

Whether you've just finished Hands-on Rust and want to continue your jour-
ney, or have mastered some of the basics of the Rust programming language
and are ready to move onto more advanced concepts, this book can help. It's
exciting to build a new game and see your hard work come to fruition. It’s
even more exciting when you have created a toolkit to help you avoid repeating
yourself in every new project. Let’s get started by setting up Rust and Bevy.

https://doc.rust-lang.org/rust-by-example/

ook wN

« Click HERE to purchase this book now. discuss

https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/std/index.html
https://bevy-cheatbook.github.io/
https://bevyengine.org/learn/book/introduction/
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

