
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 5

Build Reusable Game State Management
In Hands-on Rust, readers built and used the Flappy Dragon project as an
introductory example to Rust game development. Flappy Dragon is similar
to the classic—and popular—game, Flappy Bird. Instead of guiding a bird,
players take on the role of a majestic dragon. Despite the character change,
the primary objects remain the same: avoid obstacles and don’t hit the ground.

Because the game logic and player controls are relatively simple, Flappy-like
games are sometimes referred to as the “Hello, World” of game development.
These types of games are not only fun to build but also extensible: you can
add menus, game over screens, track scores, increase difficulty, and best of
all, you can add your own visual flair.

Over the next four chapters, you’ll build a new, graphical version of Flappy
Dragon using both the Bevy engine and the library you built in Part II, Your
First Library, on page ?. The initial setup is very similar to the example from
part one—so let’s start with a premade base.

Setting up Flappy Dragon
You can find the initial implementation of Flappy Dragon in the code/FlappyIn-
tro/flappy_dragon_base/ directory of the accompanying source code. You’ll also
need my_library, in the state it was in at the end of part one of this book. You
can find it in the code/FirstLibraryDocs/my_library/ directory.

To get started, you’ll need to create a new project for Flappy Dragon. Select
a base directory and change directory to it. Then, create a new project with
Cargo:

cd (path)➾

cargo new flappy_dragon➾

Next, copy the source code into the new project structure:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

1. Copy flappy_dragon_base (the directory, not just the contents) into the
(path)/flappy_dragon directory from code/FlappyIntro/flappy_dragon_base/.

2. Copy my_library (again, the directory) into the code/FirstLibraryDocs/my_library/
directory.

You should now have a directory structure that looks like this:

(path)
flappy_dragon

flappy_dragon_base
assets
src
Cargo.toml

my_library
src
Cargo.toml

src
Cargo.toml

Let’s add flappy_dragon_base and my_library to the top-level workspace. Open
(path)/flappy_dragon/Cargo.toml and add the following lines to the [workspace] section:

[workspace]
members = [

"flappy_dragon_base",
"my_library"

]

It’s always a good idea to warn users when they try to run the top-level
workspace. Open (path)/flappy_dragon/src/main.rs and change it to warn the user
that they are trying to run the top-level workspace:

fn main() {
println!("Please run the flappy_dragon_base project instead.");

}

Finally, link the library to the project. Open (path)/flappy_dragon/Cargo.toml and
add the my_libary and bevy to the [dependencies] section:

[package]
name = "flappy_dragon_base"
version = "0.1.0"
edition = "2021"

[dependencies]
bevy = "0.12"
my_library = { path = "../my_library" }

You can now run the project:

cd (path)/flappy_dragon/flappy_dragon_base➾

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

cargo run➾

The game should start, and look like this:

Paths in the Downloaded Source Code

The downloadable source code includes multiple versions of both
flappy_dragon_base and my_library. The Rust workspace system doesn’t
like it when projects have the same name inside a workspace, so
the downloadable version changes project names in Cargo.toml. As
you follow along with the book, update your project and keep the
names the same, which will make it easier to follow along.

Understanding the Flappy Dragon Code
This implementation does not include anything you haven’t already used in
the book so far, so there’s not much to explain. However, there are some
things to know before you get started with the updates.

• Click HERE to purchase this book now. discuss

Setting up Flappy Dragon • 5

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Flappy Dragon uses two graphics, both located in the assets directory. The
dragon graphic is freely available from OpenGameArt.1 The wall graphic was
quickly put together in The Gimp.2

Most games follow a similar overall game cycle that includes an optional
loading screen, a main menu, playing the game, and finally a game over
screen. When players reach the game over screen, they typically either exit
the game or play again. You can visualize this game cycle as follows:

Main Menu Game Over

Play Game

Exit Program

In this chapter, you’ll create the main menu and game over screens for Flappy
Dragon and Pig. More specifically, you’ll build a reusable menu system suitable
for inclusion in any game you create, as you’ll see when you add these items
to Pig (you’ll do this near the end of the chapter). As you work through this
chapter, you’ll learn more about generics, traits, and state management. You’ll
also learn how to use macros to shorten complicated syntax.

Understanding Bevy and Game States
Before you create your state management system, it’s worth taking a moment
to study how Bevy handles application state. At the top level, a Bevy game
maintains a state variable. State is stored as a resource and can be accessed
in systems. And Bevy’s scheduler uses the game’s state to determine what
systems to run.

States operate in phases:

• When a state becomes active, any systems attached to its OnEnter phase
runs.

• With every “tick,” the active state’s Update systems are executed.

1. https://opengameart.org/content/flappy-dragon-sprite-sheets
2. https://www.gimp.org/

• 6

• Click HERE to purchase this book now. discuss

https://opengameart.org/content/flappy-dragon-sprite-sheets
https://www.gimp.org/
http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

• When a state is deactivated, systems contained in the state’s OnExit run.

You specify which systems run for each state in your app builder by adding
system sets. We’ll model GameState as an enumeration—it isn’t provided by
Bevy, you will have to make one to represent your game state. In this example,
we’ve added a PlayMyGame state to illustrate how states can be connected to
Bevy systems:

// System runs for all states
.add_systems(Update, System1)

// System runs when State becomes active
.add_systems(OnEnter(GameState::PlayMyGame), setup)

// System runs each tick State is active
.add_system(OnUpdate(GameState::PlayMyGame), run)

// System runs when State becomes inactive
.add_system(OnExit(GameState::PlayMyGame), exit)

As a rule of thumb, try to make states self-contained.

A state should perform set up and tag entities as belonging to the state. When
the state exits, it should clean up any entities tagged as belonging to that
state. This ensures that states can operate independently, which is especially
important in a library, since you—the author—have no idea what a library
consumer might do in the states you didn’t design.

Modeling Game State
Let’s start by organizing the code in my_library.

Your building a framework to handle game flow, so create a module named
bevy_framework. The framework will include multiple modules, so let’s put it
inside a folder. Create a new directory named my_library/src/bevy_framework. In
that folder, create an empty file named mod.rs. Now, include the file in my_library
by opening my_library/src/lib.rs and adding the following code:

mod bevy_framework;
pub use bevy_framework::*;

bevy_framework is now part of my_library, and it exports any public members to
library consumers.

Engines vs. Frameworks

A framework is a skeleton organization, while an engine actually
does the work. Bevy is an engine: it takes over control of your

• Click HERE to purchase this book now. discuss

Modeling Game State • 7

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

Engines vs. Frameworks

program and requires that you work within its idioms. A framework
is more forgiving, offering a suggested approach to a task.

Flappy Dragon is a simple game: you’re either playing the game or you’re not.
Adding in menus, you can model the states as follows:

#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash, Default, States)]
enum GamePhase {

MainMenu,➤

Flapping,
GameOver,➤

}

Pig is a bit more complicated, with several states that activate while the game
is running. Pig’s game phase enumeration will need expanding to also include
the game menus:

#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash, Default, States)]
enum GamePhase {

MainMenu,➤

Start,
Player,
Cpu,
End,
GameOver,➤

}

Adding the MainMenu and GameOver items adds a little complexity to your work-
flow—but don’t worry, you’re going to automate most of the task of using it
in your library. Let’s start building a state management plugin for Bevy.

Layered States

Before version 0.11, Bevy supported nesting states inside other
states, and states with parameters. The Bevy Engine team decided
upon a simpler state system. It works fine—but you’ll have to add
generic states into your state enumeration every time.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwmrust
http://forums.pragprog.com/forums/hwmrust

