
Extracted from:

Hands-on Rust
Effective Learning through 2D Game Development and Play

This PDF file contains pages extracted from Hands-on Rust, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Hands-on Rust
Effective Learning through 2D Game Development and Play

Herbert Wolverson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: Vanya Wong
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-816-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Capturing User Input
Most computer programs operate in a cycle of accepting input from the user
and transforming that into some form of—hopefully useful—output. A calcu-
lator without buttons is useless, and a computer program without input is
equally limited to always doing the same thing. You used println! in “Hello,
World” to output text; you can use read_line() to accept data from the terminal.

In this section, you’ll use the terminal to ask the visitor to type their name
and receive the result. Finally, you’ll make use of Rust’s formatting system
to print a personalized greeting to the terminal.

Prompting for the Visitor’s Name
When a visitor arrives at your swanky new treehouse, you need to ask them
for their name. In Printing Text, on page ?, you used println! to print text to
the screen. You’ll do the same thing here, too.

Replace println!("Hello, World") with:

FirstStepsWithRust/hello_yourname/src/main.rs
println!("Hello, what's your name?");

Why Did the Project Name Change?

Don’t worry, you’re still working on the treehouse project. The source
code examples in this book are provided in chunks, representing
each stage of development within the chapter. When you see the
source file name change, it means that the code is referring to the
next example along the way—you don’t need to change anything.

You replaced the output string asking for the visitor’s name. Now you’re ready
to receive and store the answer.

Storing the Name in a Variable
You’ll store the visitor’s name in a variable. Rust variables default to being
immutable. Once an immutable variable is assigned, you cannot change the
value stored in the variable. You can make more variables, reference, or copy
a previously assigned variable, but you can’t change the immutable variable
once it is assigned. You can explicitly mark a variable as mutable with the
mut keyword. Once marked as mutable, a variable may be changed as needed.

Add a second line of code to your program:

FirstStepsWithRust/hello_yourname/src/main.rs
let mut your_name = String::new();

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/hello_yourname/src/main.rs
http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/hello_yourname/src/main.rs
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

Be Wary of Mutation

Mutants are scary and mutable variables can be too. It’s tempting
to mark everything as mutable so you don’t need to remember to
add mut when you need it. Rust/Clippy will warn you when a
variable doesn’t need to be marked as mut. It’s a good idea to heed
the warnings, because it’s much easier to think about what a
program does if you can be sure that a variable still means what
you think it means.

This code creates a mutable variable named your_name, and sets it to be an
empty text string. The syntax for the variable declaration looks like this:1

let mut your_name = String::new();

“let” declares a new variable.

mut makes the variable
“Mutable” - the variable may be
changed after creation.

Variable name

Assignment
Operator.

Value to
assign

String is a type, built into Rust.2 Types can have functions associated with
them; you’ll learn how to do this for your types in Grouping Data with Structs,
on page ?.

Use snake_case for Variable Names

Rust encourages you to use snake_case for variable names. Use
lowercase and replace spaces with _. Clippy will remind you if you
forget.

Let’s obtain the user’s name from the keyboard and store it in a string.

Receiving Keyboard Input
Rust’s standard input system provides an easy way to receive keyboard input.
Rust provides terminal input functions in std::io::stdin.3 You can find read_line
as std::io::stdin::read_line. That’s a lot of typing just to read a line of text from the
keyboard. Let’s import the name with Rust’s use keyword so that you don’t
have to type out the full version every time.

1. https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html.
2. https://doc.rust-lang.org/1.7.0/book/strings.html.
3. https://doc.rust-lang.org/std/io/struct.Stdin.html.

• 6

• Click HERE to purchase this book now. discuss

https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/1.7.0/book/strings.html
https://doc.rust-lang.org/std/io/struct.Stdin.html
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

Add the following line to the top of main.rs:

FirstStepsWithRust/hello_yourname/src/main.rs
use std::io::stdin;

This line imports std::io::stdin into your project. Now you can just type stdin
instead of remembering all of the namespace prefix.

Reading User Input
Now that you have access to stdin, and a variable in which to store the user’s
name, you’re ready to read that name from the console input. Add the following
code to your main function, immediately after the variable declaration:

FirstStepsWithRust/hello_yourname/src/main.rs
stdin()

.read_line(&mut your_name)

.expect("Failed to read line");

Combining functions like this is called function chaining. Starting from the
top, each function passes its results to the next function. It’s common to
format a function chain with each step on its line, indented to indicate that
the block belongs together. The cargo fmt command (see Formatting Your Code,
on page ?) will automatically apply this formatting standard for you.

Why Create the Variable First?

read_line() wants to write its results into an existing string, rather
than returning to a new one. You have to create the empty String
first so that it has somewhere to store the function’s results.

Here are the sections of the read_line call explained:

stdin() stdin() returns an object granting access to the Standard Input.

read_line() is a method, from the Stdin object.
It receives keyboard input until you press ENTER.

&mut : “Borrow” the variable, allowing changes to be made
to your variable by the called function.

.expect(...) : “Unwrap” a Result object, and terminate the program
with the specified message if an error has occurred.

 .read_line(&mut your_name)

 .expect("Failed to read line");

You can learn two important concepts from this code:

• Prefixing a variable with an ampersand (&) creates a reference to the
variable. A reference passes access to the variable itself, not a copy of the
variable. This is also called borrowing—you’re lending the variable to the

• Click HERE to purchase this book now. discuss

Capturing User Input • 7

http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/hello_yourname/src/main.rs
http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/hello_yourname/src/main.rs
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

function you are calling. Lending with &mut permits the borrowing function
to mutate your variable. Any changes it makes to the variable are written
directly into the variable you lent. Passing &mut your_name to read_line allows
the read_line function to write directly into your_name.

• You expect the read_line function to work correctly. If it doesn’t, your program
will crash. Rust is returning a Result object, and you are checking that the
function worked by calling expect. Don’t worry about the details of this
yet. You’ll learn about error handling in Handling Errors in the Main
Function, on page ?.

Printing with Placeholders
Now that the your_name variable contains the visitor’s name, you can greet
them properly. Greeting the user requires another println! call:

FirstStepsWithRust/hello_yourname/src/main.rs
println!("Hello, {}", your_name)

The println macro is almost the same as before, but it has gained a placeholder.
Including {} in your println! string indicates that a variable’s value goes here.
You then provide the variable as a second parameter to the macro call. Rust
includes a very powerful formatting system and can take care of most of your
string formatting needs out of the box.4

The Completed Greeter Program
Your treehouse admission program now looks like this:

FirstStepsWithRust/hello_yourname/src/main.rs
use std::io::stdin;

fn main() {
println!("Hello, what's your name?");
let mut your_name = String::new();
stdin()

.read_line(&mut your_name)

.expect("Failed to read line");
println!("Hello, {}", your_name)

}

Run the program with cargo run (see Run Hello, World, on page ? if you need
a refresher on running programs), and you’ll see the following:

cargo run➾

Hello, what's your name?❮

4. https://doc.rust-lang.org/std/fmt/

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/hello_yourname/src/main.rs
http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/hello_yourname/src/main.rs
https://doc.rust-lang.org/std/fmt/
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

Herbert➾

Hello, Herbert❮

Congratulations, you now have working input and output. Let’s learn about
functions by moving your input code into a reusable block of code.

Moving Input to a Function
You’re frequently going to be asking the user for their name in this chapter.
Whenever you have commonly used code, it’s a good idea to move it into a
function. This has two advantages: you don’t keep typing the same code, and
a single call to what_is_your_name() is less disruptive of the overall flow of your
function, which lets you concentrate on the important parts. This is a form
of abstraction: you replace detailed code with a function call and move the
detail into a function.

When Should I Use a Function?

Try to use a function when you are typing the same code repeat-
edly. This is called the DRY principle: Do not Repeat Yourself. Code
Complete [McC04] provides an excellent overview of the DRY Prin-
ciple and its practical application.

You should also consider breaking code up into functions if it
becomes very large. It’s much easier to read a shorter function
that calls other functions, especially when you come back to a
piece of code after a break.

In Hello, World, on page ?, you declared the main function; making your own
functions is similar:

FirstStepsWithRust/hello_yourname_function/src/main.rs
use std::io::stdin;

fn what_is_your_name() -> String {❶
let mut your_name = String::new();❷
stdin()

.read_line(&mut your_name)

.expect("Failed to read line");
your_name❸

}

fn main() {
println!("Hello, what's your name?");
let name = what_is_your_name();❹
println!("Hello, {}", name);

}

• Click HERE to purchase this book now. discuss

Moving Input to a Function • 9

http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/hello_yourname_function/src/main.rs
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

❶ The function signature is very similar to the main function. The function
name is different, and -> String denotes that it returns a String.

❷ The read_line code is the same, moved into your function.

❸ This line doesn’t end with a semicolon. This is Rust shorthand for return.
Any expression may return this way. It’s the same as typing return your_name;.
Clippy will complain if you type return when you don’t need it.

❹ Instead of calling read_line directly, call your function and store the result
in name.

Now that you have your input function, you’re ready to move on.

Trimming Input
The program’s output looks good on screen, but it contains a subtle bug. The
string contains some extra characters representing the ENTER key. You can
see this by replacing your last println! call with the following:

FirstStepsWithRust/treehouse_guestlist_problem/src/main.rs
println!("{:?}", name);

Replacing the {} placeholder with {:?} uses the debug placeholder. Any type
that supports debug printing will print a detailed debugging dump of its
contents, rather than just the value. If you run the program now, you can
see the problem:

Hello, what's your name?❮

Herbert➾

"Herbert\r\n" (or "Herbert\n" on UNIX-based systems)❮

\r is a special character that means carriage return. On old printers, it returned
the printhead to the left of the page. \n means a new line. Windows generates
these two characters for an ENTER keypress. UNIX-derived systems just
append \n.

Rust’s strings include a trim() function to remove these extra characters. If
you don’t remove these characters, you’ll be surprised when you type “Bert”
but Bert in your code doesn’t match, because the string contains Bert\r\n.

It’s also a good idea to convert the input to lowercase. This allows “Bert,”
“bert,” and even “bErt” to correctly match a name. Rust’s strings provide the
to_lowercase() function to do this for you.

Amend your function to use both trim and to_lowercase:

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/treehouse_guestlist_problem/src/main.rs
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

FirstStepsWithRust/treehouse_guestlist_trim/src/main.rs
fn what_is_your_name() -> String {

let mut your_name = String::new();
stdin()

.read_line(&mut your_name)

.expect("Failed to read line");

your_name
.trim()
.to_lowercase()

}

That’s much better. Your input is now always lowercase, and it doesn’t include
non-printing characters. A treehouse with only one visitor isn’t much of a
party. Let’s add support for more of your friends.

• Click HERE to purchase this book now. discuss

Trimming Input • 11

http://media.pragprog.com/titles/hwrust/code/FirstStepsWithRust/treehouse_guestlist_trim/src/main.rs
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

