
Extracted from:

Rust Brain Teasers
Exercise Your Mind

This PDF file contains pages extracted from Rust Brain Teasers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rust Brain Teasers
Exercise Your Mind

Herbert Wolverson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-680509-17-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Henry, my loyal canine coding companion
of thirteen years—who sadly didn’t live to see

the book’s release.

Puzzle 5

How Long Is a String?

string_length/src/main.rs
const HELLO_WORLD : &'static str = "Halló heimur";

fn main() {
println!("{} is {} characters long.",

HELLO_WORLD,
HELLO_WORLD.len()

);
}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrustbrain/code/string_length/src/main.rs
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Halló heimur is 13 characters long.

Discussion
Your eyes aren’t deceiving you—“Halló heimur”, contains 12 characters
(including the space). Let’s step back and take a look at how Rust’s String type
works. The internal struct definition of a String is straightforward:

pub struct String {
vec: Vec<u8>,

}

Strings are just a vector of bytes (u8), representing Unicode characters in an
encoding named UTF-8. Rust automatically translates your string to UTF-8.
The encoding looks like this:

H a l l ó h e i m u r Unicode Characters (10 characters)

UTF-8 Encoding: Scalar Values (19 bytes)
0x48 0x64 0x6C 0xC6 0xC3

0xB3
0x20 0x68 0x65 0x69 0x6D 0x75 0x72

Your original string, “Halló heimur” consists of 11 ASCII characters (including
the space) and one Latin-1 Supplement character: the ó. ASCII characters
require 1 byte to encode, Latin supplements require 2 bytes.

Rust’s string encoding is smart enough to not store extra zeroes for each
Unicode character. If it did, String would be a vector of char types. Rust’s char is
exactly 4 bytes long—the maximum size of a single Unicode character.9 Char
variables don’t represent a single ASCII character; instead, they represent a
Unicode scalar value. The scalar value can represent a single glyph or modifi-
cation to another glyph.

String Length

String.len() counts the number of bytes in the string’s backing vector. If a String
was storing every character as a char, you’d expect Halló heimur to occupy 48
bytes of memory. Rust’s String isn’t storing characters; it’s storing a byte array
representing just the bytes needed to output the stored text.

9. https://doc.rust-lang.org/std/primitive.char.html#representation

Rust Brain Teasers • 8

• Click HERE to purchase this book now. discuss

https://doc.rust-lang.org/std/primitive.char.html#representation
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

Not all UTF-8 characters require all 4 bytes to render. For example, a space
requires only 1 byte (0x20), while most Latin Extension characters use 2 bytes.
The first byte (0xC3) indicates that the character uses the Latin Extension
character region, and the second byte (0xB3 for ó) identifies the character.

The string Halló heimur contains 11 ASCII characters—each using 1 byte of
memory—and occupies 11 bytes. Add 2 bytes for the ó and your string occu-
pies 13 bytes of memory.

Counting Characters

You can correctly count the characters in Halló heimur with the following code:

println!("{} is {} characters long.",
HELLO_WORLD,
HELLO_WORLD

.chars() // Convert to an iterator over a char sequence

.count() // Count the characters in the sequence
);

When you call my_str.chars(), you’re requesting an iterator that returns each
element of the string represented as a char.10 Rust correctly deduces that there
are a total of 12 glyphs—or Unicode scalar values—making up the string. The
iterator passes each of them to your consumer as a 4-byte char. Even if a
glyph only requires 1 or 2 bytes of memory, Rust will allocate all 4 bytes for
the char type. Traversing the iterator uses very little extra memory. If you call
collect() on the iterator—to create a vector of char data—the vector will consume
40 bytes of memory.

Use my_str.chars() to access individual characters in a String. It’s an iterator,
so you can use nth, for_each and other iterator functions to find what you’re
looking for. For example, you can access the fourth character in a string with
my_str.chars().nth(4).

Impact of UTF-8 Sizing
Unicode string sizing can be confusing at times, which can lead to surprising
results in your code. You need to be aware of the distinction between charac-
ters and bytes:

• When you’re validating string length, know what counts and what doesn’t.
For example, if you only accept usernames that are 10 characters or less,
you need to decide if you mean glyphs or bytes.

10. https://doc.rust-lang.org/std/str/struct.Chars.html

• Click HERE to purchase this book now. discuss

How Long Is a String? • 9

https://doc.rust-lang.org/std/str/struct.Chars.html
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

• When storing strings in databases, you need to remember to allocate
enough space for non-English character set strings.

• When transmitting or receiving information to/from a remote API, you
need to agree on a length standard for encoding strings in transit.

• If you’re writing a program for a memory constrained system, parsing
Unicode string character by character can consume a lot more memory
than you expected. The string love: ❤ is 7 characters long, requires 12
bytes of storage in a String—and 32 bytes of memory when processed as
individual characters. This may seem like a small amount of memory,
but if your reader enters the entirety of War and Peace into your program’s
input box, per-character parsing may require more resources than you
expected.

• When accessing individual characters in a string, it’s much safer to use
chars as opposed to directly accessing the byte array. Characters are aware
of Unicode boundaries—bytes are not. Printing the first 6 bytes of “Können”
will only print “Könne”. Printing the first 6 characters will output the
entire word.

Further Reading

Char
https://doc.rust-lang.org/std/primitive.char.html

String length
https://doc.rust-lang.org/std/string/struct.String.html#method.len

Unicode Symbol Reference
https://www.compart.com/en/unicode/

Wikipedia UTF-8
https://en.wikipedia.org/wiki/UTF-8

String Source Code
https://doc.rust-lang.org/src/alloc/string.rs.html

Rust Brain Teasers • 10

• Click HERE to purchase this book now. discuss

https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/string/struct.String.html#method.len
https://www.compart.com/en/unicode/
https://en.wikipedia.org/wiki/UTF-8
https://doc.rust-lang.org/src/alloc/string.rs.html
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

