
Extracted from:

Programming Erlang, Second Edition
Software for a Concurrent World

This PDF file contains pages extracted from Programming Erlang, Second Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Erlang, Second Edition
Software for a Concurrent World

Joe Armstrong

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-53-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2013

http://pragprog.com

CHAPTER 1

Introducing Concurrency
Let’s forget about computers for a moment; I’m going to look out of my window
and tell you what I see.

I see a woman taking a dog for a walk. I see a car trying to find a parking
space. I see a plane flying overhead and a boat sailing by. All these things
happen in parallel. In this book, we will learn how to describe parallel activities
as sets of communicating parallel processes. We will learn how to write con-
current programs.

In everyday language, words like concurrent, simultaneous, and parallel mean
almost the same thing. But in programming languages, we need to be more
precise. In particular, we need to distinguish between concurrent and parallel
programs.

If we have only a single-core computer, then we can never run a parallel
program on it. This is because we have one CPU, and it can do only one thing
at a time. We can, however, run concurrent programs on a single-core com-
puter. The computer time-shares between the different tasks, maintaining
the illusion that the different tasks run in parallel.

In the following sections, we’ll start with some simple concurrency modeling,
move on to see the benefits of solving problems using concurrency, and
finally look at some precise definitions that highlight the differences between
concurrency and parallelism.

1.1 Modeling Concurrency

We’ll start with a simple example and build a concurrent model of an everyday
scene. Imagine I see four people out for a walk. There are two dogs and a large
number of rabbits. The people are talking to each other, and the dogs want
to chase the rabbits.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

To simulate this in Erlang, we’d make four modules called person, dog, rabbit,
and world. The code for person would be in a file called person.erl and might look
something like this:

-module(person).
-export([init/1]).

init(Name) -> ...

The first line, -module(person)., says that this file contains code for the module
called person. This should be the same as the filename (excluding the .erl file-
name extension). The module name must start with a small letter. Technically,
the module name is an atom; we’ll talk more about atoms in Section 3.5,
Atoms, on page ?.

Following the module declaration is an export declaration. The export declara-
tions tells which functions in the module can be called from outside the
module. They are like public declarations in many programming languages.
Functions that are not in an export declaration are private and cannot be
called from outside the module.

The syntax -export([init/1]). means the function init with one argument (that’s
what /1 means; it does not mean divide by one) can be called from outside the
module. If we want to export several functions, we’d use this syntax:

-export([FuncName1/N1, FuncName2/N2,]).

The square brackets [...] mean “list of,” so this declaration means we want
to export a list of functions from the module.

We’d write similar code for dog and rabbit.

Starting the Simulation

To start the program, we’ll call world:start(). This is defined in a module called
world, which begins like this:

-module(world).
-export([start/0]).

start() ->
Joe = spawn(person, init, ["Joe"]),
Susannah = spawn(person, init, ["Susannah"]),
Dave = spawn(person, init, ["Dave"]),
Andy = spawn(person, init, ["Andy"]),
Rover = spawn(dog, init, ["Rover"]),
...
Rabbit1 = spawn(rabbit, init, ["Flopsy"]),

...

Chapter 1. Introducing Concurrency • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

spawn is an Erlang primitive that creates a concurrent process and returns a
process identifier. spawn is called like this:

spawn(ModName, FuncName, [Arg1, Arg2, ..., ArgN])

When spawn is evaluated, the Erlang runtime system creates a new process
(not an operating system process but a lightweight process that is managed
by the Erlang system). Once the process has been created, it starts evaluating
the code specified by the arguments. ModName is the name of the module that
has the code we want to execute. FuncName is the name of the function in the
module, and [Arg1, Arg2, …] is a list containing the arguments to the function
that we want to evaluate. Thus, the following call means start a process that
evaluates the function person:init("Joe"):

spawn(person, init, ["Joe"])

The return value of spawn is a process identifier (PID) that can be used to
interact with the newly created process.

Analogy with Objects

Modules in Erlang are like classes in an object-oriented programming language
(OOPL), and processes are like objects (or class instances) in an OOPL.

In Erlang, spawn creates a new process by running a function defined in a module. In
Java, new creates a new object by running a method defined in a class.

In an OOPL we can have one class but several thousand class instances. Similarly,
in Erlang we can have one module but thousands or even millions of processes that
execute the code in the module. All the Erlang processes execute concurrently and
independently and, if we had a million-core computer, might even run in parallel.

Sending Messages

Once our simulation has been started, we’ll want to send messages between
the different processes in the program. In Erlang, processes share no memory
and can interact only with each other by sending messages. This is exactly
how objects in the real world behave.

Suppose Joe wants to say something to Susannah. In the program we’d write
a line of code like this:

Susannah ! {self(), "Hope the dogs don't chase the rabbits"}

The syntax Pid ! Msg means send the message Msg to the process Pid. The self()
argument in the curly brackets identifies the process sending the message (in
this case Joe).

• Click HERE to purchase this book now. discuss

Modeling Concurrency • 7

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

Receiving Messages

For Susannah’s process to receive the message from Joe, we’d write this:

receive
{From, Message} ->

...
end

When Susannah’s process receives a message, the variable From will be bound
to Joe so that Susannah knows who the message came from, and the variable
Message will contain the message.

We could imagine extending our model by having the dogs send “woof woof
rabbits” messages to each other and the rabbits sending “panic go and hide”
messages to each other.

The key point we should remember here is that our programming model is
based on observation of the real world. We have three modules (person, dog,
and rabbit) because there are three types of concurrent things in our example.
The world module is needed for a top-level process to start everything off. We
created two dog processes because there are two dogs, and we created four
people processes because there were four people. The messages in the program
reflect the observed messages in our example.

Rather than extending the model, we’ll stop at this point, change gears, and
look at some of the characteristics of concurrent programs.

1.2 Benefits of Concurrency

Concurrent programming can be used to improve performance, to create
scalable and fault-tolerant systems, and to write clear and understandable
programs for controlling real-world applications. The following are some of
the reasons why this is true:

Performance
Imagine you have two tasks: A, which takes ten seconds to perform, and
B, which takes fifteen seconds. On a single CPU doing both, A and B will
take twenty-five seconds. On a computer with two CPUs that operate
independently, doing A and B will take only fifteen seconds. To achieve
this performance improvement, we have to write a concurrent program.

Until recently, parallel computers were rare and expensive, but today
multicore computers are commonplace. A top-end processor has sixty-
four cores, and we can expect the number of cores per chip to steadily
increase in the foreseeable future. If you have a suitable problem and a

Chapter 1. Introducing Concurrency • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

computer with sixty-four cores, your program might go sixty-four times
faster when run on this computer, but only if you write a concurrent
program.

One of the most pressing problems in the computer industry is caused
by difficulties in parallelizing legacy sequential code so it can run on a
multicore computer. There is no such problem in Erlang. Erlang programs
written twenty years ago for a sequential machine now just run faster
when we run them on modern multicores.

Scalability
Concurrent programs are made from small independent processes.
Because of this, we can easily scale the system by increasing the number
of processes and adding more CPUs. At runtime the Erlang virtual machine
automatically distributes the execution of processes over the available
CPUs.

Fault tolerance
Fault tolerance is similar to scalability. The keys to fault tolerance are
independence and hardware redundancy. Erlang programs are made up
of many small independent processes. Errors in one process cannot
accidentally crash another process. To protect against the failure of an
entire computer (or data center), we need to detect failures in remote
computers. Both process independence and remote failure detection are
built into the Erlang VM.

Erlang was designed for building fault-tolerant telecommunications sys-
tems, but the same technology can be applied equally well to building
fault-tolerant scalable web systems or cloud services.

Clarity
In the real world things happen in parallel, but in most programming
languages things happen sequentially. The mismatch between the paral-
lelism in the real world and the sequentiality in our programming
languages makes writing real-world control problems in a sequential
language artificially difficult.

In Erlang we can map real-world parallelism onto Erlang concurrency in
a straightforward manner. This results in clear and easily understood
code.

Now that you’ve seen these benefits, we’ll try to add some precision to the
notion of concurrency and parallelism. This will give us a framework to talk
about these terms in future chapters.

• Click HERE to purchase this book now. discuss

Benefits of Concurrency • 9

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

1.3 Concurrent Programs and Parallel Computers

I’m going to be pedantic here and try to give precise meanings to terms such
as concurrent and parallel. We want to draw the distinction between a concur-
rent program, which is something that could potentially run faster if we had
a parallel computer, and a parallel computer that really has more than one
core (or CPU).

• A concurrent program is a program written in a concurrent programming
language. We write concurrent programs for reasons of performance,
scalability, or fault tolerance.

• A concurrent programming language is a language that has explicit lan-
guage constructs for writing concurrent programs. These constructs are
an integral part of the programming language and behave the same way
on all operating systems.

• A parallel computer is a computer that has several processing units (CPUs
or cores) that run at the same time.

Concurrent programs in Erlang are made from sets of communicating
sequential processes. An Erlang process is a little virtual machine that can
evaluate a single Erlang function; it should not be confused with an operating
system process.

To write a concurrent program in Erlang, you must identify a set of processes
that will solve your problem. We call this act of identifying the processes
modeling concurrency. This is analogous to the art of identifying the objects
that are needed to write an objected-oriented program.

Choosing the objects that are needed to solve a problem is recognized as being
a hard problem in object-oriented design. The same is true in modeling con-
currency. Choosing the correct processes can be difficult. The difference
between a good and bad process model can make or break a design.

Having written a concurrent program, we can run it on a parallel computer.
We can run on a multicore computer or on a set of networked computers or
in the cloud.

Will our concurrent program actually run in parallel on a parallel computer?
Sometimes it’s hard to know. On a multicore computer, the operating system
might decide to turn off a core to save energy. In a cloud, a computation might
be suspended and moved to a new computer. These are things outside our
control.

Chapter 1. Introducing Concurrency • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

We’ve now seen the difference between a concurrent program and a parallel
computer. Concurrency has to do with software structure; parallelism has to
do with hardware. Next we’ll look at the difference between sequential and
concurrent programming languages.

1.4 Sequential vs. Concurrent Programming Languages

Programming languages fall into two categories: sequential and concurrent.
Sequential languages are languages that were designed for writing sequential
programs and have no linguistic constructs for describing concurrent compu-
tations. Concurrent programming languages are languages that were designed
for writing concurrent programs and have special constructs for expressing
concurrency in the language itself.

In Erlang, concurrency is provided by the Erlang virtual machine and not by
the operating system or by any external libraries. In most sequential program-
ming languages, concurrency is provided as an interface to the concurrency
primitives of the host operating system.

The distinction between operating system– and language-based concurrency
is important because if you use operating system–based concurrency, then
your program will work in different ways on different operating systems.
Erlang concurrency works the same way on all operating systems. To write
concurrent programs in Erlang, you just have to understand Erlang; you
don’t have to understand the concurrency mechanisms in the operating
system.

In Erlang, processes and concurrency are the tools we can use to shape and
solve our problems. This allows fine-grained control of the concurrent structure
of our program, something that is extremely difficult using operating system
processes.

Wrapping Up

We’ve now covered the central themes of this book. We talked about concur-
rency as a means for writing performant, scalable, and fault-tolerant software,
but we did not go into any details as to how this can be achieved. In the next
chapter, we’ll take a whirlwind tour through Erlang and write our first con-
current program.

• Click HERE to purchase this book now. discuss

Sequential vs. Concurrent Programming Languages • 11

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

