
Extracted from:

Programming Erlang, Second Edition
Software for a Concurrent World

This PDF file contains pages extracted from Programming Erlang, Second Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Erlang, Second Edition
Software for a Concurrent World

Joe Armstrong

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-53-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2013

http://pragprog.com

CHAPTER 18

Browsing with Websockets and Erlang
In this chapter, we will see how to build applications in the browser and
extend the idea of using message passing to outside Erlang. This way, we can
easily build distributed applications and integrate them with a web browser.
Erlang thinks that the web browser is just another Erlang process, which
simplifies our programming model, putting everything into the same concep-
tual framework.

We’re going to pretend that a web browser is an Erlang process. If we want
the browser to do something, we’ll send it a message; if something happens
within the browser that we need to attend to, the browser will send us a
message. All of this is possible thanks to websockets. Websockets are part
of the HTML5 standard and are bidirectional asynchronous sockets that can
be used to pass messages between a browser and an external program. In
our case, the external program is the Erlang runtime system.

To interface the Erlang runtime system to websockets, we run a simple Erlang
web server, called cowboy, to manage the socket and the websocket protocol.
Details of how to install cowboy are covered in Chapter 25, Third-Party Pro-
grams, on page ?. To simplify things, we assume that all messages between
Erlang and the browser are JSON messages.

On the Erlang side of the application these messages appear as Erlang maps
(see Section 5.3, Maps: Associative Key-Value Stores, on page ?), and in the
browser these messages appear as JavaScript objects.

In the rest of this chapter, we’ll look at six example programs, including the
code that runs in the browser and the code that runs in the server. Finally,
we’ll look at the client-server protocol and see how messages from Erlang to
the browser are processed.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

To run these examples, we need three things: some code that runs in the
browser, some code that runs in an Erlang server, and an Erlang server that
understands the websockets protocol. We’re not going to look at all the code
here; we’ll look at the code that runs in the browser and in the server but not
the code for the server itself. All the examples can be found at https://github.com/
joearms/ezwebframe. The browser code in the examples has been tested only in
the Chrome browser.

Note: The code shown here is a simplified version of the code in the ezwebframe
repository. The code here is written using maps. The code in the repository
is kept in sync with the Erlang distribution and will reflect any changes to
Erlang when maps are introduced in version R17 of Erlang (expected in late
2013, but maps will appear in branches on GitHub before the official release).

To run the code yourself, you’ll need to download the code and follow the
installation interactions. As far as we are concerned, the interesting parts of
the code are the part that runs in the browser and the part that runs in the
server.

All the examples use a simple technique for controlling the browser from
Erlang. If Erlang wants the browser to do something, it just sends the
browser a message telling it what to do. If the user wants to do something,
they click a button or some other control in the browser and a message is
sent to Erlang. The first example shows in detail how this works.

18.1 Creating a Digital Clock

The following image shows the clock running in a browser. All the irrelevant
details of the browser window, such as the menus, toolbars, and scrollbars,
are not shown so that we can concentrate on the code.

The essential part of this application is the display. This contains a time,
which is updated every second. From the Erlang point of view, the entire
browser is a process; so, to update the clock to the value shown earlier, Erlang
sent the browser the following message:

• 6

• Click HERE to purchase this book now. discuss

https://github.com/joearms/ezwebframe
https://github.com/joearms/ezwebframe
http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

Browser ! #{ cmd => fill_div, id => clock, txt => <<"16:30:52">> }

Inside the browser, we have loaded an HTML page with a small fragment of
HTML like this:

<div id='clock'>
...

</div>

When the browser receives a fill_div, it converts this into the JavaScript com-
mand fill_div({cmd:'fill_div', id:'clock', txt:'16:30:52'}), which then fills the content of
the div with the required string.

Note how the Erlang message containing a frame gets converted to an equiv-
alent JavaScript function call, which is evaluated in the browser. Extending
the system is extremely easy. All you have to do is write a small JavaScript
function corresponding to the Erlang message that you need to process.

To complete the picture, we need to add the code that starts and stops the
clock. Putting everything together, the HTML code looks like this:

websockets/clock1.html
<script type="text/javascript" src="./jquery-1.7.1.min.js"></script>
<script type="text/javascript" src="./websock.js"></script>
<link rel="stylesheet" href="./clock1.css" type="text/css">
<body>

<div id="clock"></div>
<button id="start" class="live_button">start</button>
<button id="stop" class="live_button">stop</button>

</body>
<script>
$(document).ready(function(){

connect("localhost", 2233, "clock1");
});

</script>

First, we load two JavaScript libraries and a style sheet. clock1.css is used to
style the display of the clock.

Second, there is some HTML that creates the display. Finally, we have a small
fragment of JavaScript that is run when the page is loaded.

Note: In all our examples we assume some familiarity with jQuery. jQuery
(http://jquery.com) is an extremely popular JavaScript library that simplifies
manipulating objects in the browser.

websock.js has all the code necessary for opening a websocket and connecting
the objects in the browser DOM to Erlang. It does the following:

• Click HERE to purchase this book now. discuss

Creating a Digital Clock • 7

http://media.pragprog.com/titles/jaerlang2/code/websockets/clock1.html
http://jquery.com
http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

1. Adds click handlers to all buttons with class live_button in the page. The
click handlers send messages to Erlang when the buttons are clicked.

2. Tries to start a websocket connection to http://localhost:2233. On the server
side, the function clock1:start(Browser) will be called in a freshly spawned
process. All this is achieved by calling the JavaScript function connect("local-
host", 2233, "clock1"). The number 2233 has no particular significance; any
unused port number over 1023 would do.

Now here’s the Erlang code:

websockets/clock1.erl
-module(clock1).
-export([start/1, current_time/0]).

start(Browser) ->
Browser ! #{ cmd => fill_div, id => clock, txt => current_time() },
running(Browser).

running(Browser) ->
receive

{Browser, #{ clicked => <<"stop">>} } ->
idle(Browser)

after 1000 ->
Browser ! #{ cmd => fill_div, id => clock, txt => current_time() },
running(Browser)

end.

idle(Browser) ->
receive

{Browser, #{clicked => <<"start">>} } ->
running(Browser)

end.

current_time() ->
{Hour,Min,Sec} = time(),
list_to_binary(io_lib:format("~2.2.0w:~2.2.0w:~2.2.0w",

[Hour,Min,Sec])).

The Erlang code begins execution in start(Browser); Browser is a process represent-
ing the browser. This is the first interesting line of code:

Browser ! #{ cmd => fill_div, id => clock, txt => current_time() }

This updates the display. I’ve repeated this line for emphasis. My editor told
me to remove it. But no. To me this is very beautiful code. To get the browser
to do something, we send it a message. Just like Erlang. We’ve tamed the
browser. It looks like an Erlang processes. Whoopeee.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jaerlang2/code/websockets/clock1.erl
http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

After the initializing, clock1 calls running/1. If a {clicked => <<"stop">>} message is
received, then we call idle(Browser). Otherwise, after a timeout of one second,
we send a command to the browser telling it to update the clock and call
ourselves.

idle/1 waits for a start message and then calls running/1.

18.2 Basic Interaction

Our next example has a scrollable text area for displaying data and an entry.
When you enter text in the entry and press the carriage return, a message is
sent to the browser. The browser responds with a message that updates the
display.

The HTML code for this is as follows:

websockets/interact1.html
<script type="text/javascript" src="./jquery-1.7.1.min.js"></script>
<script type="text/javascript" src="./websock.js"></script>
<link rel="stylesheet" href="./interact1.css" type="text/css">
<body>

<h2>Interaction</h2>
<div id="scroll"></div>

<input id="input" class="live_input"></input>

</body>
<script>
$(document).ready(function(){

connect("localhost", 2233, "interact1");
});

</script>

And here is the Erlang:

• Click HERE to purchase this book now. discuss

Basic Interaction • 9

http://media.pragprog.com/titles/jaerlang2/code/websockets/interact1.html
http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

websockets/interact1.erl
-module(interact1).
-export([start/1]).

start(Browser) -> running(Browser).

running(Browser) ->
receive

{Browser, #{entry => <<"input">>, txt => Bin} }
Time = clock1:current_time(),
Browser ! #{cmd => append_div, id => scroll,

txt => list_to_binary([Time, " > ", Bin, "
"])}
end,
running(Browser).

This works in a similar manner to the clock example. The entry sends a
message containing the text in the entry to the browser each time the user
hits Enter in the entry. The Erlang process that manages the window receives
this message and sends a message back to the browser that causes the display
to update.

18.3 An Erlang Shell in the Browser

We can use the code in the interface pattern to make an Erlang shell that
runs in the browser.

We won’t show all the code since it is similar to that in the interaction
example. These are the relevant parts of the code:

websockets/shell1.erl
start(Browser) ->

Browser ! #{cmd => append_div, id => scroll,
txt => <<"Starting Erlang shell:
">>},

B0 = erl_eval:new_bindings(),
running(Browser, B0, 1).

running(Browser, B0, N) ->

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jaerlang2/code/websockets/interact1.erl
http://media.pragprog.com/titles/jaerlang2/code/websockets/shell1.erl
http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

receive
{Browser, #{entry => <<"input">>}, txt => Bin}} ->

{Value, B1} = string2value(binary_to_list(Bin), B0),
BV = bf("~w > ~s
~p
",

[N, Bin, Value]),
Browser ! #{cmd => append_div, id => scroll, txt => BV},
running(Browser, B1, N+1)

end.

The tricky bit is done in the code that parses and evaluates the input string.

websockets/shell1.erl
string2value(Str, Bindings0) ->

case erl_scan:string(Str, 0) of
{ok, Tokens, _} ->

case erl_parse:parse_exprs(Tokens) of
{ok, Exprs} ->
{value, Val, Bindings1} = erl_eval:exprs(Exprs, Bindings0),

{Val, Bindings1};
Other ->

io:format("cannot parse:~p Reason=~p~n",[Tokens,Other]),
{parse_error, Bindings0}

end;
Other ->

io:format("cannot tokenise:~p Reason=~p~n",[Str,Other])
end.

And now we have an Erlang shell running in the browser. Admittedly it’s a
very basic shell, but it illustrates all the techniques necessary to build a much
more sophisticated shell.

• Click HERE to purchase this book now. discuss

An Erlang Shell in the Browser • 11

http://media.pragprog.com/titles/jaerlang2/code/websockets/shell1.erl
http://pragprog.com/titles/jaerlang2
http://forums.pragprog.com/forums/jaerlang2

