
Extracted from:

Java by Comparison
Become a Java Craftsman in 70 Examples

This PDF file contains pages extracted from Java by Comparison, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Java by Comparison
Become a Java Craftsman in 70 Examples

Simon Harrer
Jörg Lenhard

Linus Dietz

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Andrea Stewart
Copy Editor: Liz Welch
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-287-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Document Using Examples

class Supply {

/**
* The code universally identifies a supply.
*
* It follows a strict format, beginning with an S (for supply), followed➤

* by a five digit inventory number. Next comes a backslash that
* separates the country code from the preceding inventory number. This
* country code must be exactly two capital letters standing for one of
* the participating nations (US, EU, RU, CN). After that follows a dot
* and the actual name of the supply in lowercase letters.
*/

static final Pattern CODE =
Pattern.compile("^S\\d{5}\\\\(US|EU|RU|CN)\\.[a-z]+$");

}

Some programming constructs are very powerful, but also very complex.
Regular expressions fall into this category. You should document complex
constructs in a way that makes them easier to understand.

Above, you see a lengthy regular expression. Its name, CODE, doesn’t help you
to understand what it’s good for, but there’s also a lengthy comment.

This might seem like a good solution. After all, at least there’s a comment
and not just the code. The comment describes the sort of strings that the
regex will match, and the code even takes care that the regex is compiled
exactly once.

The problem isn’t that the documentation is wrong (it’s not). The problem is
that it’s less precise than it should be, and it only duplicates what a skilled
developer can already read from the regex code itself.

“Lead by example” is always good advice. This comes in very handy for docu-
menting a regex.

Comment Mode

You can also add comments within your regular expressions like this: B[1-9]# Beta
Release Numbers. For that to work, you need to pass in the Pattern.COMMENTS flag. Those
comments can help, especially for long and complex regular expressions, but we think
that examples are even more helpful.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

Take a look at how we can improve the documentation:

class Supply {

/**
* The expression universally identifies a supply code.
*
* Format: "S<inventory-number>\<COUNTRY-CODE>.<name>"➤

*
* Valid examples: "S12345\US.pasta", "S08342\CN.wrench",➤

* "S88888\EU.laptop", "S12233\RU.brush"
*
* Invalid examples:➤

* "R12345\RU.fuel" (Resource, not supply)
* "S1234\US.light" (Need five digits)
* "S01234\AI.coconut" (Wrong country code. Use US, EU, RU, or CN)
* " S88888\EU.laptop " (Trailing whitespaces)

*/
static final Pattern SUPPLY_CODE =

Pattern.compile("^S\\d{5}\\\\(US|EU|RU|CN)\\.[a-z]+$");
}

The comment above is a little more lengthy, but it’s also more structured,
and it provides a lot more information. In a nutshell, it describes the format
in semi-natural language, and it gives several valid and invalid examples.

The starting sentence is the same as before, but the Format: part condenses the
content of the prior example into a single line. This line’s just a variation of the
code, but with the actual semantics instead of regex syntax. <inventory-number>
is just so much more understandable than \\d{5}. The parts that are just
syntax, such as \ or ., don’t need a further explanation.

Next, there are concrete examples. Usually, a valid example lets you under-
stand the expression within a second. That’s not something that the code or
a lengthy explanation does. The invalid examples are a good quick reference
when something goes wrong.

Sure, examples don’t usually cover all possible cases. But they’re good enough
in 90 percent of all cases, and you’ll find them so much easier to understand.
Plus, we think you should add those examples as unit tests!

Last, we’ve also taken the opportunity to give the variable a more meaningful
name, SUPPLY_CODE.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

