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Document Using Examples

class Supply {

/**
* The code universally identifies a supply.
*
* It follows a strict format, beginning with an S (for supply), followed➤

* by a five digit inventory number. Next comes a backslash that
* separates the country code from the preceding inventory number. This
* country code must be exactly two capital letters standing for one of
* the participating nations (US, EU, RU, CN). After that follows a dot
* and the actual name of the supply in lowercase letters.
*/

static final Pattern CODE =
Pattern.compile("^S\\d{5}\\\\(US|EU|RU|CN)\\.[a-z]+$");

}

Some programming constructs are very powerful, but also very complex.
Regular expressions fall into this category. You should document complex
constructs in a way that makes them easier to understand.

Above, you see a lengthy regular expression. Its name, CODE, doesn’t help you
to understand what it’s good for, but there’s also a lengthy comment.

This might seem like a good solution. After all, at least there’s a comment
and not just the code. The comment describes the sort of strings that the
regex will match, and the code even takes care that the regex is compiled
exactly once.

The problem isn’t that the documentation is wrong (it’s not). The problem is
that it’s less precise than it should be, and it only duplicates what a skilled
developer can already read from the regex code itself.

“Lead by example” is always good advice. This comes in very handy for docu-
menting a regex.

Comment Mode

You can also add comments within your regular expressions like this: B[1-9]# Beta
Release Numbers. For that to work, you need to pass in the Pattern.COMMENTS flag. Those
comments can help, especially for long and complex regular expressions, but we think
that examples are even more helpful.
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Take a look at how we can improve the documentation:

class Supply {

/**
* The expression universally identifies a supply code.
*
* Format: "S<inventory-number>\<COUNTRY-CODE>.<name>"➤

*
* Valid examples: "S12345\US.pasta", "S08342\CN.wrench",➤

* "S88888\EU.laptop", "S12233\RU.brush"
*
* Invalid examples:➤

* "R12345\RU.fuel" (Resource, not supply)
* "S1234\US.light" (Need five digits)
* "S01234\AI.coconut" (Wrong country code. Use US, EU, RU, or CN)
* " S88888\EU.laptop " (Trailing whitespaces)

*/
static final Pattern SUPPLY_CODE =

Pattern.compile("^S\\d{5}\\\\(US|EU|RU|CN)\\.[a-z]+$");
}

The comment above is a little more lengthy, but it’s also more structured,
and it provides a lot more information. In a nutshell, it describes the format
in semi-natural language, and it gives several valid and invalid examples.

The starting sentence is the same as before, but the Format: part condenses the
content of the prior example into a single line. This line’s just a variation of the
code, but with the actual semantics instead of regex syntax. <inventory-number>
is just so much more understandable than \\d{5}. The parts that are just
syntax, such as \ or ., don’t need a further explanation.

Next, there are concrete examples. Usually, a valid example lets you under-
stand the expression within a second. That’s not something that the code or
a lengthy explanation does. The invalid examples are a good quick reference
when something goes wrong.

Sure, examples don’t usually cover all possible cases. But they’re good enough
in 90 percent of all cases, and you’ll find them so much easier to understand.
Plus, we think you should add those examples as unit tests!

Last, we’ve also taken the opportunity to give the variable a more meaningful
name, SUPPLY_CODE.
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