
Extracted from:

Java by Comparison
Become a Java Craftsman in 70 Examples

This PDF file contains pages extracted from Java by Comparison, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Java by Comparison
Become a Java Craftsman in 70 Examples

Simon Harrer
Jörg Lenhard

Linus Dietz

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Andrea Stewart
Copy Editor: Liz Welch
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-287-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

If you can’t provide a convincing before/after code for your pattern,
you’re selling snake oil.

 ➤ David Heinemeier Hanson

Welcome!
We agree with David Heinemeier Hanson.

If you propose a programming technique, you should be able to demonstrate
as concisely as possible how your proposal is better than what was there
before. The before/after approach puts all the facts on the table: you can
directly compare the new code to the old code. Only then can you make an
informed decision about which one’s better.

The same holds true when you’re learning how to program. Comparing good
code to bad code is really helpful when you’re trying to figure out how to code
in Java.

We used to teach programming at a university for over six years. After a few
lectures, there were always a few students asking us, “How can I improve
my coding skills further?” These students excelled in their programming
assignments, anyway, so we gave them the default advice: “Read code from
professionals.”

Honestly, our advice wasn’t very helpful. There’s plenty of code out in the
open source software world, but it’s hard to tell where to start. Beginners get
quickly overwhelmed with the complexity of professional code in real-life
projects. And how do you know if a piece of source code is actually of high
quality? Even if it is, how can someone with only a few months of programming
experience distinguish it from a flawed hack?

That’s where this book comes into play. It’s a companion that guides your
reading in the right direction. We’ll help you learn how to write good Java
code by comparing pieces of bad code with good code. And be assured: we’ve
seen our fair share of bad and good code over the years, reviewing code written
by students in academia, professionals in industry, and contributors in open
source projects.

This brings us back to the before/after approach. In this book, we’ll provide
you with 70 before/after code snippets. These snippets will help any beginner

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

in Java programming to improve. We identified these snippets during our
time of teaching Java to undergraduates at the university. They’re all based
on code we faced when correcting our students’ programming assignments.

Our approach in this book is simple: Given a code snippet, we’ll first explain
what’s wrong and why. Then, we’ll show you how you can transform the code
into a better solution.

Who Should Read This Book
This book is for people who are learning to program in Java at a beginner or
intermediate level. It’s also a classroom resource for teachers who coach new
developers in their journey to become programmers. Here, we’re giving you
tips and tricks based on more recent Java 81 syntax for resource handling,
functional programming, or testing.

You should read this book after you’ve learned the basic Java syntax—after
you’re able to write small programs with conditions and loops and you know
the basics of object-oriented programming. You should be able to write code
that compiles, runs, and solves small tasks like FizzBuzz (see Are You Ready?
Try the Self-Assessment, on page vii). You should be able to implement simple
algorithms, and you should know how to use basic data structures like a list,
queue, stack, or map. And obviously, you should be having fun while doing
all that!

If you feel a deep satisfaction when you solve a complicated problem, then
that’s an excellent start. But of course, you also know that there’s still a lot
to learn. When you reflect on your skills and you have to confess that you
don’t have a lot of experience in programming in Java (or even programming
in general), then you can get the maximum benefit out of this book. This
means that you probably haven’t yet developed a sense for clean code and
the best practices an experienced developer applies.

It’s about time to change this!

Of course, if you already know more advanced books on code quality, read-
ability, maintainability, and clean code in Java, such as Effective Java [Blo18]
and Clean Code [Mar08], then you’ve already come a long way. Nevertheless,
you can still find something new here and there.

1. We know that Oracle already released Java 9. Rest assured that everything in this
book is still valid in Java 9.

Welcome! • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

Teaching Clean Code Using This Book
If you teach programming to newcomers as a senior developer at a company,
you’re certainly aware of the best practices we’ll go over in this book. You
might even disagree with some, depending on what you are working on. Still,
this book can make your life easier when training a junior developer—just
use it as a reference. When you spot problems in your apprentice’s code, point
her to the corresponding item in this book. Your student can read a concise
and simple example for the problem you’re hinting at, as well as how to get
to the solution of the problem. At the very least, this saves you time because
you won’t have to write an explanation yourself.

Our experience in developing teaching concepts for Java learners in their
second to third year can also be useful for teaching in academia. This book
is the product of our combined knowledge of over fifteen years of teaching
Java to undergraduate college students in an advanced course with focus on
code quality. It might not teach Java from the ground up, but it can accom-
pany basically any course that involves programming tasks. In particular,
you can use the book as a reference when you asses student code, as we’ve
described in a workshop paper: Teaching Clean Code [DMHL18].

Are You Ready? Try the Self-Assessment
If you’re a new programmer, we suggest that you do a short self-assessment
to see if you’re ready for the material in this book: the FizzBuzz Test (see the
Fizz Buzz Test2 or Using FizzBuzz to Find Developers who Grok Coding3). Some
employers use this test in job interviews to determine if an applicant can
program at all. The task goes like this:

Write a Java program that prints the numbers from 1 to 100 to the console. But
for multiples of three, print Fizz instead of the number and for multiples of five,
print Buzz. For numbers that are multiples of both three and five, print FizzBuzz.

To make the test more interesting, we’ll extend it a bit here by making sure
that you can apply object orientation and use classes and interfaces as well.
You should implement the FizzBuzz algorithm in a class called ConsoleBased-
FizzBuzz, which implements a FizzBuzz interface. This interface provides a method
that takes the first and last numbers to print as arguments. In the main method
of a separate Main class, you should use the FizzBuzz interface with its Console-
BasedFizzBuzz implementation to count from 1 up to the value passed from the
console. Here, you’ll see the outlined structure in a short template.

2. http://c2.com/cgi/wiki?FizzBuzzTest
3. https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

• Click HERE to purchase this book now. discuss

Who Should Read This Book • vii

http://c2.com/cgi/wiki?FizzBuzzTest
https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

interface FizzBuzz {
void print(int from, int to);

}

class ConsoleBasedFizzBuzz implements FizzBuzz {
// TODO implement FizzBuzz interface

}

class Main {
// TODO use a main method
// TODO print fizz buzz from 1 to max
// TODO max is passed from the console

}

You should be able to finish this exercise in about 15 minutes. One of the
links we listed also contains solutions to the FizzBuzz challenge that you can
compare to your own. If you can do it, then you’re ready to get the most out
of this book. If not, don’t worry! Keep reading anyway. It might take you a
little longer, and you might have a harder time understanding a comparison
here and there. But if you practice programming by solving small exercises
like the ones in this book, you’ll get on track quickly.

Many good resources are available online for practicing your programming
skills and getting feedback on your code. Have a look at codewars.com4 or
cyber-dojo.5 These pages let you train your programming skills in various
levels of difficulty. If you have a mathematical background, you’ll find solving
the problems of Project Euler6 quite appealing.

If, on the other hand, you find the FizzBuzz test terribly easy, and your
solution compiles and runs within seconds, be aware that you might already
know some of the practices that we outline in this book. You can still get
something out of it, of course. We’ve made all the comparisons self-contained.
So feel free to jump around and skip the parts that you already know.

Why Read This Book?
Every developer has a number of requirements in mind that she considers
prerequisites for good or clean code. As long as a piece of code doesn’t violate
any of these requirements, it qualifies as good or clean from the viewpoint of
the developer. Different people have different requirements. And programming
languages differ, of course. But still, for a given language, there’s typically a
set of “core” requirements and best practices. These are aspects that the

4. https://www.codewars.com/?language=java
5. http://cyber-dojo.org/
6. https://projecteuler.net

Welcome! • viii

• Click HERE to purchase this book now. discuss

https://www.codewars.com/?language=java
http://cyber-dojo.org/
https://projecteuler.net
http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

community of developers recognizes and accepts, even if they aren’t written
down explicitly. In this book, we’re trying to provide you—someone who might
not yet be aware of many of the practices in the Java community—with a set
of best practices for clean code in Java.

As a beginner, your list of requirements for good Java code might be as short
as this one:

• The code must compile.
• The output must be correct.

These items are about the functional correctness of your program, but they
don’t tell much about the quality of your code. An experienced programmer
cares about a lot more than that, and her checklist is much longer. She just
needs a quick glance at a piece of code to detect flaws, bad naming, hard-to-
test methods, inconsistencies, bad practices, and much more.

The aim of this book is to train your brain to internalize more checklist items,
helping you on your way to becoming an experienced and professional pro-
grammer. Each of the items in this book represents such a checklist item.

Conventions Used in This Book
Throughout the book, we use a specific structure for explaining each checklist
item. We call it “comparison,” and we zealously stick to it.

Each comparison has a catchy name. This helps you to memorize it for your
mental checklist. Take a look at the table of contents—it acts as the checklist
of this book. The name of a comparison makes it easier to talk to other people
about what you’ve read. We’ve named the comparisons in a way that
encourages you to consider them as a recommendation. You can also put
“You should” in front of a comparison name—for example: You should avoid
unnecessary comparisons. For the upcoming example, we selected the catchy
name “Never Trust Your Input.”

Directly after the name, we’ll present a snippet of code and highlight a problem
in it. This can be a block of several lines or just a single one, like this:

class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello " + args[0]);➤

}
}

• Click HERE to purchase this book now. discuss

Why Read This Book? • ix

http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

In these code snippets, we want to distract you as little as possible. That’s
why we have to shorten the code a little bit to get to the essentials:

1. We leave out import statements and package declarations. The downloadable
code7 contains those declarations, of course—it would not compile
otherwise.

2. We avoid visibility modifiers, such as public or private, unless they’re
explicitly required.

Following the code snippet, we explain to you what the problem is. On the
way, we provide references to further reading, such as JavaDoc, related items,
or web pages.

Then, we show you the code of a solution and highlight the solution-specific
parts.

class HelloWorld {

public static void main(String[] arguments) {
if (isEmpty(arguments)) {➤

return;
}

System.out.println("Hello " + arguments[0]);➤

}

private static boolean isEmpty(String[] array) {➤

return (array == null) || (array.length == 0);
}

}

Sometimes, there’s very little difference between the problem code and the
solution. Sometimes, there’s a lot of difference. Either way, the snippets
themselves should already teach you something—a certain style that helps
you to produce better code. We deliberately keep each comparison on two
pages. The left-hand side (or first page) shows the problem, and the right-
hand side (or second page) shows the solution. This way, you can always
compare both code snippets without having to flip pages back and forth.
This makes it a lot easier to learn what an item is about. If you’re reading
this book as a PDF with Adobe Reader, make sure you’ve enabled two-page
view and that the cover page is shown—it’s almost like reading from the
printed book.

7. https://pragprog.com/titles/javacomp/source_code

Welcome! • x

• Click HERE to purchase this book now. discuss

https://pragprog.com/titles/javacomp/source_code
http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

Why Should I Learn This? There Are Static Code Analysis Tools…
You might be thinking that you already have static code analysis tools, such
as Checkstyle,8 FindBugs,9 SpotBugs,10 Error Prone,11 and PMD,12 that detect
flaws in your code. So why should you keep reading this?

That’s true for some, but it’s not true for all the problems in this book. We’d
love to see a tool that can automatically and correctly assess the concerns in
your code. The existing tools are good, but they’re not perfect. Think of them
as rigorous, intolerant, nitpicky robots that were taught a set of rules and
seek any violation. They can’t understand that sometimes there are circum-
stances where you must violate a rule to improve the code. To use them
successfully, they need to be fine-tuned, and that requires in-depth knowledge
about code quality and the project at hand.13 But even then, they can never
beat an experienced programmer, although they can help so that some issues
aren’t missed.

That’s good news, because it means that as an experienced programmer, your
skills will be in high demand. Tools can check for a lot of things, but they
often lack a detailed explanation for why something was detected. And they
rarely show you how to solve a specific issue. Oftentimes, the solution to an
issue isn’t apparent from the warning of a detection tool, and it’s rare that
you can correct the code automatically. You have to do this manually, and
that process is error prone—especially if you’re still learning Java. As a new
programmer, the tools won’t guide you to a sensible correction. That’s where
this book can help you. We’ll raise your awareness for common programming
errors that many people make when learning Java.

How to Read This Book
If you’re in your first year of Java, we suggest you read the book from start
to finish. It starts with rather basic comparisons first, but then we’ll advance
to more challenging topics, like testing, object-oriented design, and functional
programming in Java. If you’re more experienced, you can probably skip the
first two chapters and dig right into the more specialized topics.

8. http://checkstyle.sourceforge.net/
9. http://findbugs.sourceforge.net/
10. https://github.com/spotbugs/spotbugs
11. http://errorprone.info/
12. https://pmd.github.io/
13. Keep in mind: A fool with a tool is still a fool!

• Click HERE to purchase this book now. discuss

How to Read This Book • xi

http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/
https://github.com/spotbugs/spotbugs
http://errorprone.info/
https://pmd.github.io/
http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

Here’s a brief outline:

• In Chapter 1, Start Cleaning Up, on page ? we’ll give you general advice
on how to write correct code that’s readable and understandable. We’ll
touch on a lot of things related to the basic Java syntax, such as condi-
tions and braces.

• In Chapter 2, Level Up Your Code Style, on page ? we’ll discuss a few
more advanced coding concepts and problems, such as iteration, format-
ting, and using the Java API.

• Chapter 3, Use Comments Wisely, on page ? is about documenting code
well. We’ll give you some advice on how to write comments and when you
should get rid of them.

• In Chapter 4, Name Things Right, on page ? we’ll explain how you assign
proper and concise names to code elements in Java that other program-
mers will easily understand.

• Chapter 5, Prepare for Things Going Wrong, on page ? will make you
aware of how you should handle exceptions in Java.

• Chapter 6, Assert Things Going Right, on page ? gives you advice on how
to write good unit tests with JUnit5.

• Chapter 7, Design Your Objects, on page ? outlines object-oriented design
principles.

• Chapter 8, Let Your Data Flow, on page ? focuses on functional program-
ming in Java using lambda expressions.

• Finally, Chapter 9, Prepare for the Real World, on page ? directs you to
tons of material on building, releasing, and maintaining your software in
the real world.

So let’s move on and have fun!

Online Resources
This book has its own web page at www.pragprog.com.14 There, you can get
in touch with us in the discussion forum,15 post errata,16 or download the
source code17 of this book.

14. https://pragprog.com/titles/javacomp
15. http://forums.pragprog.com/forums/javacomp
16. http://pragprog.com/titles/javacomp/errata
17. https://pragprog.com/titles/javacomp/source_code

Welcome! • xii

• Click HERE to purchase this book now. discuss

https://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp
http://pragprog.com/titles/javacomp/errata
https://pragprog.com/titles/javacomp/source_code
http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

Get Ready for Your Mission to Mars
As a beginner or intermediate programmer, getting a sense for good and clean
code that others will recognize as such might appear to you as something far,
far away, a goal almost unreachable—a long journey, full of unexpected
problems and unknown experiences. It’s a bit like traveling through space to
a destination that humanity hasn’t reached yet: a journey to Mars! That was
sort of how we felt when we started to learn programming many years ago.

We’ve written the code in this book with the theme of a Mars mission, so all
the code examples have something spacey about them. But the real reason
is that we don’t want to distract you from the problem in a code snippet with
the setting that the code is in. We used the astronaut theme to give you a
better read, avoid meaningless variable names like x and y, or the umpteenth
inheritance hierarchy from animals to mammals to cats. (We have nothing
against cats—we just think they’re overused in teaching material.)

Our comparisons are based on code and coding problems that we’ve found that
a beginner or intermediate programmer often runs into when she’s learning
to program. We’ve extracted the underlying problems and put them into the
domain of space travel so it’s easier to imagine the context around them.

We can’t guarantee that you’ll become an astronaut after reading this book,
but we’re very confident that you’ll be a better programmer. So fasten your
seatbelt, and onward into (programmer) space!

• Click HERE to purchase this book now. discuss

Get Ready for Your Mission to Mars • xiii

http://pragprog.com/titles/javacomp
http://forums.pragprog.com/forums/javacomp

