
Extracted from:

Mazes for Programmers
Code Your Own Twisty Little Passages

This PDF file contains pages extracted from Mazes for Programmers, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Mazes for Programmers
Code Your Own Twisty Little Passages

Jamis Buck

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-055-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2015

https://pragprog.com
rights@pragprog.com

So far, we’ve looked at two different maze algorithms, and while both were
straightforward to understand and implement, they also had some pretty
significant biases. They could be worked around, sure, but maybe there’s a
better way. In this chapter we’re going to try to balance the scales a bit by
exploring two new algorithms, Aldous-Broder and Wilson’s, both of which are
guaranteed to be absolutely unbiased.

If that sounds too good to be true, that’s because it almost is! Nothing comes
without a price, so we’ll also see where these two algorithms—despite their
mathematical flawlessness—ultimately end up with their own set of disap-
pointments.

To get there, though, we need to have a better understanding of what biases
really are, and what it means for an algorithm to have them. Let’s take a short
step back and look at biases from another angle, so we can see more precisely
what their absence really means.

Understanding Biases
It’s easy to say “this algorithm has a bias” and “that algorithm has no bias,”
but so far we haven’t been very specific about what we mean by that. It’s more
than simply identifying a long passage or a slantwise tendency in a maze. A
visible texture or pattern in a maze—in the output of an algorithm—is only
evidence of an algorithm’s bias if a significant number of mazes generated by
that algorithm exhibit that same texture.

But even that definition doesn’t quite cover it. Unlike Sidewinder and Binary
Tree, biases may not always be blatantly obvious. They may not even produce
visible artifacts at all. To understand how that can be, let’s consider an
example.

Joe asks:

Can’t Mazes Have Biases, Too?
Walter Pullen, on his “Maze Classification” page,a uses the term “bias” to describe a
specific class of texture involving passage direction. A maze with horizontal bias, for
instance, will have longer east-to-west passages. So, yes, in some contexts, the word
bias may be applied to mazes, as well as algorithms.

However, to avoid confusion, in this book “bias” will refer strictly to algorithms, while
the more general term texture will be used to describe mazes. That is to say, a bias
of the algorithm may produce a texture in the maze.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

a. http://www.astrolog.org/labyrnth/algrithm.htm

Let’s say we wanted to generate a perfect 2×2 maze. (Recall that “perfect” here
means one with no loops in it.) The following figure shows all four of the
possible perfect mazes that can fit in a 2×2 grid. By generating a 2×2 maze
randomly, we’re effectively choosing between these four possibilities.

A B C D
This means that, conceptually, randomly generating a maze is the same as
putting all of the possible mazes into a big bag, giving them a good shake
(you know—to make sure they’re well shuffled), and then reaching into that
bag and blindly picking one of them.

The Binary Tree algorithm is one way to do this. It lets us effectively reach
into that big bag full of all possible mazes and pick one at random, but it does
so with bias. In terms of our big bag of mazes, this means that the algorithm
doesn’t actually choose evenly from among all the possibilities. It cheats.

Consider the four perfect mazes in the preceding figure again. Ideally, we’d
like the Binary Tree algorithm to be able to generate all of them, but it can’t.
(Or won’t!) Recall what we know about its biases, revealed in the unbroken
passages it always leaves on the north and east. We see right away that C is
impossible because the eastern passage is broken in half by a wall. Binary
Tree would never give us that one. D is similarly impossible—that passage
across the north is also split by a wall. In other words, Binary Tree flatly
refuses to give us anything but A and B, 50% of the possible 2×2 mazes. It is
biased against those other possibilities.

What about Sidewinder? When we recall that Sidewinder always generates
mazes with an unbroken northern passage, we immediately see that D is out,
because of that wall on the north. That gives us A, B, and C, or 75% of the
possible 2×2 mazes, which is better. But still—what we want is an algorithm
that will choose from all of them!

And as long as we’re making demands, we might as well add that we’d like
to pick them uniformly. That is to say, we want to make sure that every maze

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

in the bag has an equal chance of being selected. Some algorithms are
nonuniform, which is to say that they might eventually give us every possible
maze but tend to produce certain types more often (perhaps preferring longer
passages, for instance). These may be subtle biases, difficult or impossible
to spot by eye, but we don’t want those kinds, either.

Put simply, we’d like to see what happens when we choose our mazes uniformly
and at random from the set of all possible mazes. The good news is that there
are ways to do it, and they’re pretty straightforward, but, like everything,
there are trade-offs.

One way is called the Aldous-Broder algorithm. Let’s start there.

The Aldous-Broder Algorithm
The Aldous-Broder algorithm was developed independently by both David
Aldous, a professor at UC Berkeley, and Andrei Broder, currently a Distin-
guished Scientist at Google. It is almost as simple to implement as the Binary
Tree algorithm. The idea is just this: Start anywhere in the grid you want,
and choose a random neighbor. Move to that neighbor, and if it hasn’t previ-
ously been visited, link it to the prior cell. Repeat until every cell has been
visited.

Easy, right? It’s that random walk, the aimless, directionless meandering
from cell to cell, that is at the root of this algorithm’s ability to avoid being
biased. Sadly, as we’ll see it also means that it can take a long time to run.

Let’s walk through it once so we can see it in action. We’ll start by picking a
cell at random. We’ll color unvisited cells gray, and our old friend, the smiley
face, will indicate which cell is current.

We need to pick a random neighbor, so let’s choose east. That neighbor hasn’t
been visited yet, so we link the two cells together, and then we do the process
again from that new cell. The following figure shows three steps in a row,
each taking us to a new, unvisited cell.

• Click HERE to purchase this book now. discuss

The Aldous-Broder Algorithm • 7

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

Check out this next move, though. We choose a random neighbor, going north
this time, but that cell has already been visited. That’s okay! It’s how the
algorithm works. The only difference is, this time, we don’t link the two cells.
We simply make the neighbor the current cell, and carry on.

The process continues until every cell has been visited, which, for large mazes,
can take a while. Go ahead and finish out this maze yourself. Assuming you’re
picking the neighbors randomly, you’ll see that the random walk will tend to
meander, visiting and revisiting some cells multiple times. By the time you’re
down to just one or two unvisited cells remaining, it can be downright infuri-
ating to watch the algorithm cluelessly walk right past them!

So, have a go at it. When you’re done, you should have something like this.

Not bad! It certainly takes a bit of time to reach those last few unvisited cells,
but the process itself almost couldn’t be simpler.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

Next let’s see how to make it real in code.

Implementing Aldous-Broder
As might be expected, that random walk forms the core of our implementation,
repeatedly visiting neighboring cells until no unvisited cells remain. It comes
together without any surprises, just as described.

Put the following code in a file named aldous_broder.rb. As before, we’ll put the
algorithm in its own class so we can reuse it more easily.

aldous_broder.rb
class AldousBroderLine 1

-

def self.on(grid)-

cell = grid.random_cell-

unvisited = grid.size - 15

-

while unvisited > 0-

neighbor = cell.neighbors.sample-

-

if neighbor.links.empty?10

cell.link(neighbor)-

unvisited -= 1-

end-

-

cell = neighbor15

end-

-

grid-

end-

20

end-

Line 4 starts everything off by choosing one of the cells at random. The random
walk will begin at that cell. To make sure the algorithm knows when everything
has been visited, line 5 computes the number of unvisited cells in the grid.
(We subtract one, because we treat the starting cell as having been visited
already.) Each time a new cell is visited, that value will be decremented (line
12), and the loop continues until that value is zero (line 7).

On each pass through the loop, we choose a neighbor of the current cell at
random (line 8) and make it the new current cell (line 15). If that cell hasn’t
yet been linked to any other cells (which implies that it hasn’t been visited
before), we link it to the current cell (line 11) before going around again.

A simple demo program will suffice for testing this. Put the following in
aldous_broder_demo.rb.

• Click HERE to purchase this book now. discuss

Implementing Aldous-Broder • 9

http://media.pragprog.com/titles/jbmaze/code/aldous_broder.rb
http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

aldous_broder_demo.rb
require 'grid'
require 'aldous_broder'

grid = Grid.new(20, 20)
AldousBroder.on(grid)

filename = "aldous_broder.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Feel free to display the maze using the terminal, if you prefer; this code writes
the maze to a PNG simply so that we can make it larger, to better see the
structure of the finished maze. Running it will save the maze to a file, like
this:

$ ruby -I. aldous_broder_demo.rb
saved to aldous_broder.png
$

Opening up aldous_broder.png, we ought to see
something like this figure.

Very nice. Let’s go one step further and see if
this algorithm produces any kind of texture
that its mazes all have in common. Using our
coloring.rb program from the previous chapter
as a template, let’s modify aldous_broder.rb to
emit a colored version of the maze. In fact,
let’s have it generate and color several mazes
at once, so we can open them all up side-by-
side to compare. Put the following code in aldous_broder_colored.rb.

aldous_broder_colored.rb
require 'colored_grid'
require 'aldous_broder'

6.times do |n|
grid = ColoredGrid.new(20, 20)
AldousBroder.on(grid)

middle = grid[grid.rows / 2, grid.columns / 2]
grid.distances = middle.distances

filename = "aldous_broder_%02d.png" % n
grid.to_png.save(filename)
puts "saved to #{filename}"

end

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbmaze/code/aldous_broder_demo.rb
http://media.pragprog.com/titles/jbmaze/code/aldous_broder_colored.rb
http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

When we run it, it will generate six different images.

$ ruby -I. aldous_broder_colored.rb
saved to aldous_broder_00.png
saved to aldous_broder_01.png
saved to aldous_broder_02.png
saved to aldous_broder_03.png
saved to aldous_broder_04.png
saved to aldous_broder_05.png

If we look at those images now, we ought to see something like these.

Remember that in general, any texture that we see is only evidence of a bias
if every maze generated by the algorithm has that texture in common. Looking
at this spread, you may see a few that look like they want to stretch vertically,
and a couple seem to have a horizontal bridge in the middle, but there aren’t
any characteristics that they all seem to share. This definitely supports the
claim that Aldous-Broder has no bias!

As compelling as it is, though, it doesn’t mask the largest drawback of a
purely random walk. All is not rosy in Aldous-Broder Land. Each individual
step of the algorithm may execute quickly, but the algorithm itself can run
for a long time, especially on large mazes. That aimless meandering over
previously visited cells feels awfully wasteful, but we can’t add a heuristic, or
a way to give the process some intelligence, without taking away the very
property of uniformity that we said we wanted.

So, we can’t change Aldous-Broder itself, but maybe we can try a different
algorithm instead. Let’s see if Wilson’s does any better.

• Click HERE to purchase this book now. discuss

Implementing Aldous-Broder • 11

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

