
Extracted from:

Mazes for Programmers
Code Your Own Twisty Little Passages

This PDF file contains pages extracted from Mazes for Programmers, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Mazes for Programmers
Code Your Own Twisty Little Passages

Jamis Buck

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-055-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2015

https://pragprog.com
rights@pragprog.com

Maze-making seems magical when you’re outside looking in, but don’t be
fooled. There is no magic. Starting on this very page, we’ll begin demystifying
the processes that drive maze generation. We’ll see the scaffolding that lies
just beneath their surface. We’ll get specific, talking about what exactly mazes
are, and then we’ll get the ball rolling with two simple ways to create mazes,
walking through them together with paper and pencil.

Eventually, this will take us to some exciting places, but like most beginnings,
ours is quite humble. Here, it all starts with algorithms.

We’re going to focus on those algorithms that produce mazes randomly. Pas-
sage length, the number of dead ends, crossroad frequency, and how often
passages branch will all be determined by randomly choosing from a pre-
scribed list of possibilities.

There is no universally ideal algorithm for generating mazes, so over the
course of this book we’ll explore twelve different ones. You’ll learn how to
choose between them depending on your project’s needs, such as speed,
memory efficiency, or simplicity (or even your own personal sense of aesthet-
ics!). On top of that, most of the algorithms have little idiosyncrasies that
cause the mazes they generate to share some feature, like short, stubby
passages, or maybe the passages all skew a certain direction. We’ll explore
those, too.

But we’ll get to that. By the end of this book you’ll be an expert, able to nimbly
switch between these different algorithms to choose just the right one for the
job. You’ll be pounding these out in code before you know it.

First, though, let’s do it on paper.

Joe asks:

What’s an Algorithm?
An algorithm is just a description of a process. Like a recipe in a cookbook, it tells
you what steps to take in order to accomplish some task. Any task. Algorithms exist
for everything. If lasagna is your goal, then the steps you take to make lasagna are
your algorithm. Want to make your bed, or drive to work? Both can be described as
a series of steps. More algorithms! Algorithms launch rockets, land airplanes, drive
cars, sort information, and search the Web. Algorithms solve mazes. And if you’re
out to make a maze, like we are, your algorithm consists of the steps you take to
make that maze.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

Preparing the Grid
We’re going to start by drawing a grid—just a regular crosshatching of perpen-
dicular lines. This scaffolding will form the skeleton of the maze, the bones
and sinews that will give structure and stability to our final product.

Here’s what I want you to do.

Get out a piece of paper. It doesn’t have to be fancy—a napkin will do in a
pinch. You’ll want something to write with, too, and erasability will be a plus.

On this piece of paper, draw a grid. Four-by-
four ought to be plenty big enough for this
first experiment, and don’t worry about the
lines being all neat. Anything like this figure
should be fine.

This is our starting point. We’ll call the indi-
vidual squares cells, and the grid lines around
them walls. Beginning with this grid, our task
is to erase just the right walls—carve just the
right passages—in order to produce a maze.

That happens to be exactly what the algorithms in this book will do for us.
Most of them create what are called perfect mazes, where every cell can reach
every other cell by exactly one path. These mazes have no loops, or paths that
intersect themselves. That’s significant! This figure is an example of one of
these perfect mazes.

Don’t mistake the name for a value judgment, though. The “perfect” bit simply
refers to its logical and mathematical purity. A maze may be perfect (mathe-
matically), and yet flawed (for example, aesthetically), at the same time!

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

The opposite of a perfect maze is called a braid
maze. These are characterized by few (if any)
dead ends, and passages forming loops. Here’s
an example of a braid maze.

Going from one point to another in these
kinds of mazes can be accomplished by mul-
tiple different paths, or solutions. We’ll see
more of them in Chapter 9, Braiding and
Weaving Your Mazes, on page ?, but for now
we’ll focus just on their counterparts, the
perfect mazes.

Let’s create some!

Labyrinths versus Mazes

Some people prefer “labyrinth.” Others like “maze.” Some even use the word labyrinth
to refer to a particular kind of maze, a single passage that never branches but winds
in a convoluted path from start to finish.

Ultimately, though, it doesn’t matter what they’re called. Labyrinth or maze, they
(mostly) mean the same thing. I’ll be giving preference to the word “maze” in this
book. And while those non-branching versions (technically called unicursal mazes)
are fun to play with, they are sadly beyond the scope of this book. We’ll be focusing
on multicursal mazes—those with branching passages—which will prove to be plenty
all by themselves!

The Binary Tree Algorithm
The Binary Tree algorithm is, quite possibly, the simplest algorithm around
for generating a maze. As its name suggests, it merely requires you to choose
between two possible options at each step. For each cell in the grid, you decide
whether to carve a passage north or east. By the time you’ve done so for every
cell, you have a maze!

This process of looking at cells is called visiting them. Visiting them in some
order is walking the grid. Some walks might be random, choosing directions
arbitrarily from step to step, like the ones we’ll see in Chapter 4, Avoiding
Bias with Random Walks, on page ?. Others are more predictable. For
Binary Tree, it turns out that we can do it either way. The algorithm really
doesn’t care what order we use to visit the cells.

• Click HERE to purchase this book now. discuss

The Binary Tree Algorithm • 7

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

Let’s walk this together and see how
the Binary Tree comes together in
practice. I’ll flip a coin at each step to
decide which direction we ought to
carve a passage. Also, while the Binary
Tree algorithm itself doesn’t care
where in the grid we begin walking,
for the sake of this example we’ll just go with the cell in the southwest corner.

Our choice is this: do we erase that cell’s northern wall, or its eastern wall?
Let’s see what the coin says. If it comes up heads, we’ll carve north. Tails,
we’ll carve east.

And…heads. Looks like we erase the northern
wall.

Note that although these two cells are now
linked by a connecting passage, we haven’t
technically visited that second cell yet. We
could choose to visit that cell next (because
Binary Tree really doesn’t care which order
we visit the cells) but moving across a row
and visiting its cells in sequence is simpler to
implement. Let’s wait and hit that northern
cell when this row is finished. For now, let’s just hop over to the one immedi-
ately to the east of us.

Flipping the coin here, we get tails. This
means we’ll erase the eastern wall of our cur-
rent cell.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

And flipping the coin for the next cell over
gives us tails again.

Moving east again, our current cell becomes
the one in the southeast corner. We could
certainly flip the coin here, too, but consider
what would happen if the coin came up tails.
We’d have to carve a passage through the
outer wall of the maze. This is not generally a
good idea. We’ll talk more in a moment about
adding entrances and exits to your mazes,
but for now we want to avoid tunneling out of bounds. Since that effectively
forbids going east, north becomes our only viable option. No need to flip a
coin—let’s just take care of business and carve north.

In fact, that constraint exists for every cell
along that entire eastern boundary. None of
them can host an east-facing passage. We
might as well just take care of those now by
carving north on each one of them. We’ll con-
sider each of them visited as well.

Now, for the sake of demonstration, let’s jump
all the way to the northwest corner and see
what happens next. (Yeah, this is a bit
unorthodox…but remember, Binary Tree only
needs us to visit all the cells—it doesn’t care
what order we use to do that.)

Once again, we could flip a coin, but consider
what happens if the coin lands heads-up: we’d
have to carve through that northern wall. We
don’t want that. Instead, we’ll forego the coin
flipping and just carve east.

• Click HERE to purchase this book now. discuss

The Binary Tree Algorithm • 9

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

Again, notice how that constraint applies to
every cell along that entire northern boundary.
You can’t carve north from any of them, so
all of them default to going east instead.

One more special case to consider. Let’s jump
to the northeast corner.

We can carve neither north, nor east from
here. Our hands are tied. With nothing to
choose from, we choose nothing. Of all the
cells in our grid, this is the only one for whom
nothing can be done. We shrug our shoulders
and skip it.

Go ahead and grab your own coin, now, and
flesh out the rest of those cells that haven’t
been visited yet. Once a decision has been
made for every cell, you should be left with a
maze that looks something like the figure.

That’s really all there is to it! You just learned
the Binary Tree algorithm for random maze
generation. Painless!

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

