
Extracted from:

Mazes for Programmers
Code Your Own Twisty Little Passages

This PDF file contains pages extracted from Mazes for Programmers, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Mazes for Programmers
Code Your Own Twisty Little Passages

Jamis Buck

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-055-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2015

https://pragprog.com
rights@pragprog.com

When you take a surface and divide it up into different shapes, with no gaps
between them and no overlaps, you get what is called a tessellation of the
surface. Our standard grid is one such tessellation, where we’ve broken up
a flat area, or plane, into smaller squares. Another way to say this is that
we’ve tiled the plane with squares.

It turns out that squares aren’t the only shape that can do this for us. In this
chapter, we’ll look at two other grids made by tiling other geometric shapes.
We’ll see how hexagons come together in a honeycomb pattern and triangles
form a girder-style lattice. Over the course of the chapter, we’ll use these new
grids to turn out mazes like the following:

Let’s start with the one on the left: a maze on hexagon grid.

Implementing a Hex Grid
So far we’ve made regular grids and circular grids. Our next goal is to create
a grid of hexagons, also called a hex grid for short. We’ll approach this by first
considering a single cell, with an eye to understanding how it relates spatially
to its neighbors. From there, we’ll take that information and implement the
grid itself.

The cells aren’t difficult to implement. The trickiest part is just understanding
how they all fit together. Let’s look at a simple hex grid here:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

From that, we can see that each hexagon neighbors up to six other hexagons,
one for each of north, south, northwest, northeast, southwest, and southeast.
Right off, it’s clear that our existing Cell won’t cut it; it doesn’t include enough
neighbors! Let’s take care of that now by introducing a new Cell subclass.

Put the following in hex_cell.rb.

hex_cell.rb
require 'cell'

class HexCell < Cell
attr_accessor :northeast, :northwest
attr_accessor :southeast, :southwest

def neighbors
list = []
list << northwest if northwest
list << north if north
list << northeast if northeast
list << southwest if southwest
list << south if south
list << southeast if southeast
list

end
end

This simply extends the Cell class, adding new accessors for northwest, northeast,
southwest, and southeast, and then updates the neighbors method to return those
new directions. Note that the west and east accessors inherited from the Cell
class are unused. With the hexagons in our grid oriented the way they are
(flat-topped), they will never have neighbors to the east or west.

The next step is to figure out how these cells are arranged in the grid. Although
they aren’t necessarily laid out in clear rows, it’s not too hard to find an
arrangement that works well.

Looking at the previous diagram again, we can see that although vertical
columns are clearly present in the grid, horizontal rows are less obvious. It’s
probably no surprise that there are lots of different ways to approach repre-
senting hexagons in a program, nor should it be surprising that each will
have different pros and cons. We’re going to choose a way to do it that maps
most closely to our underlying two-dimensional array, simply because it
requires the fewest changes on our end to implement.

The following figure shows how it will work, treating each row as a zig-zag
path from one side of the grid to the other, whereas columns simply drop
vertically through the grid.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbmaze/code/hex_cell.rb
http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

A2
B2 D2

C2

A

1

2

3

4

B C D

C2

C1

C4

C3

A

1

2

3

4

B C D

This choice has consequences for how we set up the grid. Most immediately,
it means that when we set up the adjacency information for cells in some
columns (for example, B and D in the previous illustration), the northwest
and northeast diagonals point to the cell’s same row, whereas southwest and
southeast point to the row below. Conversely, for the other columns (for
example, A and C) northwest and northeast are the ones that point to a dif-
ferent row.

Tricky, but not insurmountable!

Let’s make a new Grid subclass. We’ll override the prepare_grid method so that
it instantiates our new HexCell class for cells, and we’ll override configure_cells to
set up the correct adjacency information for each cell.

Put the following in hex_grid.rb.

• Click HERE to purchase this book now. discuss

Implementing a Hex Grid • 7

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

hex_grid.rb
require 'grid'Line 1

require 'hex_cell'-

-

class HexGrid < Grid-

def prepare_grid5

Array.new(rows) do |row|-

Array.new(columns) do |column|-

HexCell.new(row, column)-

end-

end10

end-

-

def configure_cells-

each_cell do |cell|-

row, col = cell.row, cell.column15

-

if col.even?-

north_diagonal = row - 1-

south_diagonal = row-

else20

north_diagonal = row-

south_diagonal = row + 1-

end-

-

cell.northwest = self[north_diagonal, col - 1]25

cell.north = self[row - 1, col]-

cell.northeast = self[north_diagonal, col + 1]-

cell.southwest = self[south_diagonal, col - 1]-

cell.south = self[row + 1, col]-

cell.southeast = self[south_diagonal, col + 1]30

end-

end-

end-

Lines 17–23 set up some variables to help us deal with those zig-zagging rows.
When the column is even-numbered (col.even?), we make it so the northern
diagonals point to the preceding row, whereas the southern diagonals point
to the current row. When the column is odd-numbered, we swap it so the
northern diagonals point to the current row, and the southern ones point to
the following row.

With those variables, lines 25–30 compute the cells that abut the current
cell.

That will suffice to set up our grid, with all the cells appropriately cozy with
their neighbors. All we lack now is a way to display it, since the to_png method
on Grid itself can’t handle anything but squares.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbmaze/code/hex_grid.rb
http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

Displaying a Hex Grid
To display a hex grid, we need to be able to compute the coordinates of each
of its corners, or vertices. We’ll see how to compute those coordinates relative
to the center of each hexagon, as well as how to compute the overall dimen-
sions of a hex grid, and then we’ll plug that all into a new to_png implementa-
tion.

We’re going to assume that our grid is composed of regular
hexagons—hexagons whose sides are all the same length. With that
assumption, there is a lovely little derivation involving equilateral triangles
(triangles whose sides are all equal) that lets us get the measurements we
need. For the sake of brevity, we’ll skip the derivation itself here, but if you’re
into geometry at all it’s pleasantly straightforward.

Essentially, what we want are the lengths of a1, a2, and b in the following
diagram:

c

s

b

a1 a2

Figure 3—A Dissected Hexagon

If c is the center of our hexagon, and s is the length of a side, then it turns
out that a1 and a2 are identical. (We’ll just keep it simple, then, and call them
both a.) We also find that a is half of s, and the length of b is s√3/2. From
that, it follows that the width of our hexagon (from western point to eastern
point) is exactly 2s, and the height is 2b. In code:

a_size = s / 2.0
b_size = s * Math.sqrt(3) / 2.0
width = s * 2.0
height = b_size * 2.0

With these numbers we can compute the x- and y-coordinates of all six of
the hexagon’s vertices. If cx and cy represent the coordinates of the center
point for some cell, and we call those vertices “far” that are farther from the
center and “near” those that are nearer, we get:

• Click HERE to purchase this book now. discuss

Displaying a Hex Grid • 9

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

x_far_west = cx - s
x_near_west = cx - a_size
x_near_east = cx + a_size
x_far_east = cx + s

y_north = cy - b_size
y_mid = cy
y_south = cy + b_size

Now that we have those named coordinates we can say (for instance) that the
vertex at the 3 o’clock position is at (x_far_east,y_mid).

The last bit we need before implementing our new drawing code is a way to
calculate the dimensions of our canvas. It’s not as straightforward as a regular
grid, because adjacent cells are offset from each other. In cases like this, it’s
helpful to take our grid and overlay a regular grid on top of it, like the following
figure.

Figure 4—Measuring a Hex Grid

We know how to compute the dimensions of a regular grid, so if we can figure
out how wide each cell of the overlay is, we can determine the size of our
original grid.

In this case, we’ve got a 4×4 grid of hexagons. If you recall Figure 3, A Dissect-
ed Hexagon, on page 9, you can see that each of the rectangles here are
three a lengths wide, measuring from the western point of one hex to the
western point of the next neighbor. Counting the squares, then, this 4×4
canvas as a whole is as wide as four of those squares, plus one more a length.
In code, it might come together like this:

canvas_width = 3 * columns * a_size + a_size

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

The height is much more straightforward. We can easily see that each square
is as tall as one hexagon, and that the canvas as a whole is as tall as four of
those hexes, plus another half-hex (a single b length). In other words:

canvas_height = rows * height + b_size

Putting this all together, we can finally write our new to_png method! Put the
following in hex_grid.rb, somewhere inside the HexGrid class.

hex_grid.rb
def to_png(size: 10)Line 1

a_size = size / 2.0-

b_size = size * Math.sqrt(3) / 2.0-

width = size * 2-

height = b_size * 25

-

img_width = (3 * a_size * columns + a_size + 0.5).to_i-

img_height = (height * rows + b_size + 0.5).to_i-

-

background = ChunkyPNG::Color::WHITE10

wall = ChunkyPNG::Color::BLACK-

-

img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)-

-

[:backgrounds, :walls].each do |mode|15

each_cell do |cell|-

cx = size + 3 * cell.column * a_size-

cy = b_size + cell.row * height-

cy += b_size if cell.column.odd?-

20

f/n = far/near-

n/s/e/w = north/south/east/west-

x_fw = (cx - size).to_i-

x_nw = (cx - a_size).to_i-

x_ne = (cx + a_size).to_i25

x_fe = (cx + size).to_i-

-

m = middle-

y_n = (cy - b_size).to_i-

y_m = cy.to_i30

y_s = (cy + b_size).to_i-

-

if mode == :backgrounds-

color = background_color_for(cell)-

if color35

points = [[x_fw, y_m], [x_nw, y_n], [x_ne, y_n],-

[x_fe, y_m], [x_ne, y_s], [x_nw, y_s]]-

img.polygon(points, color, color)-

end-

else40

• Click HERE to purchase this book now. discuss

Displaying a Hex Grid • 11

http://media.pragprog.com/titles/jbmaze/code/hex_grid.rb
http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

img.line(x_fw, y_m, x_nw, y_s, wall) unless cell.southwest-

img.line(x_fw, y_m, x_nw, y_n, wall) unless cell.northwest-

img.line(x_nw, y_n, x_ne, y_n, wall) unless cell.north-

img.line(x_ne, y_n, x_fe, y_m, wall) unless cell.linked?(cell.northeast)-

img.line(x_fe, y_m, x_ne, y_s, wall) unless cell.linked?(cell.southeast)45

img.line(x_ne, y_s, x_nw, y_s, wall) unless cell.linked?(cell.south)-

end-

end-

end-

50

img-

end-

The named size parameter on line 1 is what we’ve called s previously—the size
of a single side of the hexagon. The computations that follow (lines 2–5) use
that value to determine the dimensions of our hexagons, as discussed.

The next two lines (7 and 8) compute the total width of our canvas. The extra
0.5 makes sure we always round to the nearest whole number.

The three lines starting at 17 compute the center point of the current cell,
since that’s what our subsequent calculations will be relative to. It all comes
back to Figure 4, Measuring a Hex Grid, on page 10, except here we’re mea-
suring the distance of that current cell from the center of the first cells in its
corresponding row and column.

Once we know the center point, we can compute the coordinates of the corners
of the current cell, as we talked about earlier. Lines 23–31 take care of that.

The remaining lines work identically to our original to_png method, drawing
the appropriate walls for each cell based on which neighbors exist and have
been linked to the current cell.

That’s it! With our new to_png, we ought to be able to draw hex grids and—by
extension—mazes. Let’s do that next!

Making Hexagon (Sigma) Mazes
A maze made on a hex grid is, for some perverse reason, properly called a
sigma maze. Fortunately, it works the same regardless of what you call it:
just choose a maze algorithm and let it run its course. Let’s use the Recursive
Backtracker algorithm to put our new to_png implementation through its paces.
Put the following in a file named hex_maze.rb.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

hex_maze.rb
require 'recursive_backtracker'
require 'hex_grid'

grid = HexGrid.new(10, 10)
RecursiveBacktracker.on(grid)

grid.to_png.save('hex.png')

Running it, you ought to get some-
thing like this figure. Very nice! It’s
definitely working as we wanted.
Experiment a bit with some other
maze algorithms and see what you get,
but be careful with Binary Tree and
Sidewinder! These two need a bit of
babysitting.

To understand why, recall The Binary Tree Algorithm, on page ?. For each
cell, we choose between north and east to decide which neighbor to link, but
in the case of a hexagon grid, cells have no eastern neighbor. The best we have
are northeast, and southeast. Similarly, Sidewinder wants to choose an
eastern neighbor but will also be foiled by our new geometry. So what do we
do?

Well, neither of those algorithms actually wants “east.” What they really want
is “the cell in the same row, in the next column over.” On a regular grid, that
just happens to be east. For a hex grid, that will be either northeast or
southeast, depending on the current column, but we don’t even need to worry
about that. We took care of the row/column assignments when we set up the
grid. To get the neighbor in the next column over, we can just use our array
accessor, like this:

east = grid[cell.row, cell.column+1]

Give it a try! Implement the Binary Tree and Sidewinder algorithms on a hex
grid, and see what you get. When you’re ready, we’ll move on to another style
of grid: triangles!

• Click HERE to purchase this book now. discuss

Making Hexagon (Sigma) Mazes • 13

http://media.pragprog.com/titles/jbmaze/code/hex_maze.rb
http://pragprog.com/titles/jbmaze
http://forums.pragprog.com/forums/jbmaze

