Extracted from:

The Ray Tracer Challenge

A Test-Driven Guide to Your First 3D Renderer

This PDF file contains pages extracted from The Ray Tracer Challenge, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
Ogrammers

The Ray Tracer
Challenge

A Test-Driven Guide
to Your First 3D Renderer

Jamis Buck
Foreword by David Buck
Edited by Brian P. Hogan

The Ray Tracer Challenge

A Test-Driven Guide to Your First 3D Renderer

Jamis Buck

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Brian P. Hogan
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-271-8
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Getting Started

Okay. You are officially awesome. You're one of those programmers, the ones

who actively seek out new ways to apply their craft and tackle challenges for
the thrill of it. You're in good company!

With this book, you're going to build a 3D renderer from scratch. Specifically,
you’ll build a ray tracer, casting rays of light backward into a scene and fol-
lowing their paths as they bounce around toward a light source. It’s generally
not a very fast technique (and so isn’t well-suited for real-time rendering) but
it can produce very realistic results. By the end of this book, you’ll be able to
render scenes like this one:

And you don’t have to be a mathematician or computer scientist to do it!

Beginning at the bottom, you’ll build a foundation of basic routines and tools.
You'll use those to bootstrap other routines, making light rays, shapes, and
functions to predict how they’ll interact. Then things start moving quickly,
and within a few chapters you’ll be producing realistic images of 3D spheres.
You'll add shadows and visual effects like geometric patterns, mirror reflec-
tions, and glass. Other shapes follow—planes, cubes, cylinders, and more.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

Getting Started ® vi

By the end of the book, you'll be taking these primitive shapes and combining
them in complex ways using set operations. There’ll be no stopping you!

The specific algorithm you’ll implement is called Whitted ray tracing,' named
for Turner Whitted, the researcher who described it in 1979. It’s often referred
to as recursive ray tracing, because it works by recursively spawning rays
(lines representing rays of light) and bouncing them around the scene to
discover what color each pixel of the final image should be. In a nutshell, the
algorithm works like this for each of the image’s pixels:

1. Cast a ray into the scene, and find where it strikes a surface.

2. Cast a ray from that point toward each light source to determine which
lights illuminate that point.

3. If the surface is reflective, cast a new ray in the direction of reflection and
recursively determine what color is reflected there.

4. If the surface is transparent, do the same thing in the direction of refrac-
tion.

5. Combine all colors that contribute to the point (the color of the surface,
the reflection, and refraction) and return that as the color of the pixel.

Over the course of this book, you'll implement each of those steps, learning
how to compute reflection vectors, how to approximate refraction, how to
intersect rays with various primitive shapes, and more. Sooner than you
might think, you'll be rendering awesome 3D scenes!

Who This Book Is For

Ultimately, this book is for anyone who loves writing code, but you’ll get the
most out of it if:

* You have prior experience writing software (perhaps a year or more).
* You've written unit tests before.
¢ You like tinkering and experimenting with code and algorithms.

It really doesn’t matter what programming environment or operating system
you prefer. The only code in this book is pseudocode. Admittedly, the expla-
nations do tend toward imperative, procedural, and object-oriented languages,
but the concepts and tests themselves are translatable to any environment
you wish.

1. en.wikipedia.org/wiki/Ray tracing (graphics)#Recursive ray tracing_algorithm

« Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#Recursive_ray_tracing_algorithm
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

How to Read This Book ® vii

How to Read This Book

Each chapter is presented as a series of tests covering a small piece of the
overall ray tracer. Since each one builds on previous chapters, you’ll be most
successful if you read them in sequence.

You'll implement your ray tracer in test-first style, writing a few tests at a
time and making them pass by implementing the corresponding functions
and features in code. The first half of the book is structured to take you
smoothly from test to test, but as you get into the second half of the book,
the pace picks up. With greater experience comes greater responsibility! You'll
still be given the tests, but there will be less hand-holding, and the tests will
be presented in a more linear fashion, almost like a checklist.

Each chapter introduces one or more new features, discusses how the feature
works at a high level, and then walks you through the tests and how to make
them pass. The tests are posed as Cucumber scenarios,” but it is absolutely
not necessary to use Cucumber to implement them. Please feel free to use
whatever system you prefer to write your tests!

Typically, Cucumber is used to describe high-level interactions between a
user and an application, but the tests in this book use it differently. Here,
you'll see it used to describe lower-level interactions, like how various inputs
to a specific function might affect the function’s output. This lets the book
walk you through the construction of an API, step by step, rather than just
showing you the high-level behavior that you need to try to emulate. For
example, consider the following hypothetical specification which describes
the behavior of concatenating two arrays.

Scenario: Concatenating two arrays should create a new array
Given a <« array(l, 2, 3)
And b < array(3, 4, 5)
When c < a + b
Then ¢ = array(1, 2, 3, 3, 4, 5)

It’'s structured like any Cucumber scenario, but describes low-level API
interactions:

¢ It begins with two assumptions (“Given...And”), which must be true to start.
These use left arrows («) to assign two arrays to two variables, a and b.

2. Technically, the tests are written in Gherkin, which is the language in which Cucumber
specs are written. See cucumber.io.

« Click HERE to purchase this book now. discuss

https://cucumber.io
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

Getting Started viii

* After everything has been initialized, an action occurs (“When”). The result
of this action is what is to be tested. Note that this also uses the left arrow,
assigning the result of concatenating a and b to another variable, c.

e Finally, an assertion is made (“Then”), which must be true. This uses the
equals operator (=) to assert that the variable c is equal to the given array.

Your job as the reader is to implement each test, and then make each pass.
You're welcome to do so in Cucumber if you like—in fact, the Cucumber tests
may be downloaded from the publisher,’ to save you the effort of keying them
all in by hand. But if Cucumber isn’t your thing, you can be just as successful
by translating the Cucumber scenarios into whatever testing system you
prefer. Honestly, part of the puzzle—part of the fun!—is translating each
specification into a working unit test. The scenario tells you what the behavior
should be. You get to decide how to make it happen.

While working through this book, you're going to discover that an implemen-
tation that worked for one test might not work well (or at all) for a later test.
You’'ll need to be flexible and willing to refactor as you discover new require-
ments. That, or read the entire book through before beginning your implemen-
tation so you know what’s coming up.

Also, be aware that I've made many of the architectural decisions in this book
with the goal of being easy to explain. Often, there will be more efficient ways
to implement a function, or to architect a feature. You may disagree with the
book at times, and that’s okay! This book is a roadmap, describing just one
of many possible ways to get to the goal. Follow your own aesthetic sense.
Make your code your own.

Lastly, at the end of each chapter is a section called “Putting It Together.”
This is where you’ll find a description of something that builds on the code
you wrote for that chapter and gives you a chance to play and experiment
with your new code. Sometimes it will be a small project, and other times a
list of possible things to try or directions to explore. It’s certainly possible to
skip those sections if you're in a hurry, but if you do you’ll be missing one of
the most enjoyable parts of the journey.

Things to Watch Out For

A ray tracer is math-heavy. There’s no getting around it. It works its magic
by crunching numbers, finding intersections between lines and shapes,
computing reflections and refractions, and blending colors. So, yes, there will

3. pragprog.com/book/jbtracer/the-ray-tracer-challenge

« Click HERE to purchase this book now. discuss

https://pragprog.com/book/jbtracer/the-ray-tracer-challenge
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

Things to Watch Out For ® ix

be a great deal of math here, but I will mostly give it to you, ready to imple-
ment. You'll find little or no focus on where the math comes from, no deriva-
tions of formulas, no explanations of why an equation does what it does.
You'll see the formulas and, where necessary, walk through how to implement
them, but you won’t wade through proofs and derivations. If the proofs and
derivations are what you particularly enjoy, you can always find a great deal
of information about them online.

Also, number-crunching tends to be fairly CPU-intensive. A ray tracer offers
a lot of opportunities to optimize code, but that’s not the focus of this book.
If you follow along and implement just what is described, your code will
probably not be very efficient or very fast—but it will work. Think of optimiza-
tion as a bonus exercise!

Other things to watch out for, in no particular order, are these:

Comparing floating-point numbers

Especially in tests, you’ll need to be able to compare two floating-point
numbers to determine if they are approximately equal. The specifications
in the book represent this loose comparison with a simple equals sign.
In practice, you’ll need to be more explicit and test that the two numbers
are within an error value that the book refers to as EPSILON, something
like this: |a - b| < EPSILON. In practice, using a tiny value like 0.0001
for EPSILON is generally fine.

Comparing data structures
As with comparing numbers, it’s also assumed that you'll need to compare
data structures to see if they are equal. For example, you’ll need to be
able to see whether two points are the same. These comparison routines
aren’t explicitly described in the book, but you’'ll need to implement them
all the same. It wouldn’t hurt to add tests for these routines, too, despite
them not being given in the book.

Representing infinity
In later chapters, like Chapter 12, Cubes, on page ?, and Chapter 13,

infinity. If your programming language can represent infinity natively,
that’s great! Otherwise, you can usually fake it by using a very large
number instead. (Something like 1x10" is usually plenty. In many pro-
gramming languages, you can write that as 1el0.)

Use your own names and architecture!
The names of functions and variables given in the book are just recom-
mendations. The functions are designed so that the first argument is the

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

Getting Started ® x

“responsible party,” or the entity with responsibility for the domain in
question. In object-oriented terms, the first argument would be the self
object. But don't let this stop you from reassigning those responsibilities
if you prefer. You should always feel free to choose names more appropriate
to your own architecture.

Also, the ray tracer will be described imperatively, but you should look
for ways to adapt these descriptions to the strengths and idioms of your
programming environment. Embrace your classes, modules, namespaces,
actors, and monads, and make this ray tracer your own!

A lot of work has gone into making sure everything in this book is accurate
and error-free, but nobody’s perfect. If you happen to find a mistake some-
where, please let me know about it. You can report errata on the book’s web
site.* And be sure to visit the book’s discussion forum,® where you can ask
questions, share tips and tricks, and post eye candy you've rendered with
your ray tracer. This forum is purely my own and is not affiliated with the
Pragmatic Bookshelf in any way.

With all that out of the way, brace yourself—we're going to jump right in and
get started. This is going to be fun!

4. pragprog.com/book/jbtracer/the-ray-tracer-challenge

« Click HERE to purchase this book now. discuss

https://pragprog.com/book/jbtracer/the-ray-tracer-challenge
http://forum.raytracerchallenge.com
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

