
Extracted from:

The Ray Tracer Challenge
A Test-Driven Guide to Your First 3D Renderer

This PDF file contains pages extracted from The Ray Tracer Challenge, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

The Ray Tracer Challenge
A Test-Driven Guide to Your First 3D Renderer

Jamis Buck

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Brian P. Hogan
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-271-8
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Hey, look. That shiny red sphere from before has company now. Its friends
appear to be a cigar-looking matte blue ovoid, and a squashed green plastic
thing that’s tipped toward us, as if curious to see who’s looking.

Would it surprise you to learn that these are all just spheres? They’ve been
moved around, scaled, and rotated a bit too, but deep down, they’re all still
perfectly spherical. These transformations are all thanks to a little thing called
a matrix.

A matrix is a grid of numbers that you can manipulate as a single unit. For
example, here’s a 2x2 matrix. It has two rows and two columns.

[

3 1

2 7

]

And here’s a 3x5 matrix, with three rows and five columns:




9 1 2 0 3

0 0 2 3 1

8 7 5 4 6





For your ray tracer, you’ll use primarily 4x4 matrices—those with exactly four
rows and four columns, like this:









1 2 0 0

0 1 4 1

0 1 1 3

0 0 0 1









In this chapter, you’ll implement a 4x4 matrix data structure and a few gen-
eral matrix operations. In the chapter after this one, Chapter 4, Matrix
Transformations, on page ?, you’ll build on those operations, adding func-
tionality to make it easier to manipulate points and vectors (and, ultimately,
shapes).

Ready? Let’s do this!

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

Creating a Matrix
First things first. You need to be able to describe a new matrix. Write a test
like the following, which shows that a matrix is composed of four rows of four
floating point numbers each, for a total of sixteen numbers. It should also
show how to refer to the elements of the matrix.

features/matrices.feature
Scenario: Constructing and inspecting a 4x4 matrix

Given the following 4x4 matrix M:
1	2	3	4
5.5	6.5	7.5	8.5
9	10	11	12
13.5	14.5	15.5	16.5

Then M[0,0] = 1
And M[0,3] = 4
And M[1,0] = 5.5
And M[1,2] = 7.5
And M[2,2] = 11
And M[3,0] = 13.5
And M[3,2] = 15.5

The first thing to notice is when talking about the individual elements of the
matrix, we specify the element’s row first, and then its column. For example,
element M23 is the one at row 2, column 3. Also note in this book, row and
column indices will be zero-based, so row 2 is actually the third row.

Later, in Inverting Matrices, on page ?, you’ll need to be able to instantiate
both 2x2 and 3x3 matrices in addition to 4x4 matrices, so take a moment to
make sure you can create matrices of those sizes as well. Add the following
tests to show that your code supports those dimensions:

features/matrices.feature
Scenario: A 2x2 matrix ought to be representable

Given the following 2x2 matrix M:
| -3 | 5 |
| 1 | -2 |

Then M[0,0] = -3
And M[0,1] = 5
And M[1,0] = 1
And M[1,1] = -2

Scenario: A 3x3 matrix ought to be representable
Given the following 3x3 matrix M:

-3	5	0
1	-2	-7
0	1	1

Then M[0,0] = -3
And M[1,1] = -2

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbtracer/code/features/matrices.feature
http://media.pragprog.com/titles/jbtracer/code/features/matrices.feature
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

And M[2,2] = 1

Keep your matrix implementation as simple as possible. Prefer
native types wherever you can, and avoid complicated abstractions.
Your matrices will be doing a lot of work!

Another critical part of your matrix implementation is matrix comparison.
You’ll be comparing matrices a lot, especially in this chapter and the next,
so it’s important to get it right. The following two tests are not exhaustive but
ought to point you in the right direction. For example, you’ll want to make
sure that very similar numbers are handled correctly when comparing
matrices, as described in Comparing Floating Point Numbers, on page ?.

features/matrices.feature
Scenario: Matrix equality with identical matrices

Given the following matrix A:
1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

And the following matrix B:
1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

Then A = B

Scenario: Matrix equality with different matrices
Given the following matrix A:

1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

And the following matrix B:
2	3	4	5
6	7	8	9
8	7	6	5
4	3	2	1

Then A != B

Once you’ve got the basic matrix data structure working, linear algebra is
your oyster. We’re going to do some wild things with matrices, but we’ll start
small; let’s talk about multiplying them together.

Multiplying Matrices
Multiplication is the tool you’ll use to perform transformations like scaling,
rotation, and translation. It’s certainly possible to apply them one at a time,

• Click HERE to purchase this book now. discuss

Multiplying Matrices • 7

http://media.pragprog.com/titles/jbtracer/code/features/matrices.feature
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

sequentially, but in practice you’ll often want to apply several transformations
at once. Multiplying them together is how you make that happen, as you’ll
see when you get to Chapter 4, Matrix Transformations, on page ?.

So let’s talk about matrix multiplication. It takes two matrices and produces
another matrix by multiplying their component elements together in a specific
way. You’ll see how that works shortly, but start first by writing a test that
describes what you expect to happen when you multiply two 4x4 matrices
together. Don’t worry about 2x2 or 3x3 matrices here; your ray tracer won’t
need to multiply those at all.

features/matrices.feature
Scenario: Multiplying two matrices

Given the following matrix A:
1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

And the following matrix B:
-2	1	2	3
3	2	1	-1
4	3	6	5
1	2	7	8

Then A * B is the following 4x4 matrix:
20	22	50	48
44	54	114	108
40	58	110	102
16	26	46	42

Let’s look at how this is done for a single element of a matrix, going step-by-
step to find the product for element C10, highlighted in the figure on page 9.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbtracer/code/features/matrices.feature
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

1
2
3
4

2
3
4
5

3
4
5
6

4
5
6
7

0
1
2
4

1
2
4
8

2
4
8

16

4
8

16
32

× =

A B C

Element C10 is in row 1, column 0, so you need to look at row 1 of the A matrix,
and column 0 of the B matrix, as shown in the following figure.

1
2
3
4

2
3
4
5

3
4
5
6

4
5
6
7

0
1
2
4

1
2
4
8

2
4
8

16

4
8

16
32

× =

A B C

row 1, col 0row 1 column 0

Then, you multiply corresponding pairs of elements together (A10 and B00,
A11 and B10, A12 and B20, and A13 and B30), and add the products. The follow-
ing figure shows how this comes together.

1
2
3
4

2
3
4
5

3
4
5
6

4
5
6
7

0
1
2
4

1
2
4
8

2
4
8

16

4
8

16
32

× =

A B C

A10 B00× = 2 × 0 = 0
A11 B10× = 3 × 1 = 3
A12 B20× = 4 × 2 = 8

A13 B30× = 5 × 4 = 20

31

31

The result, here, is 31, and to find the other elements, you perform this same
process for each row-column combination of the two matrices.

Stated as an algorithm, the multiplication of two 4x4 matrices looks like this:

1. Let A and B be the matrices to be multiplied, and let M be the result.

• Click HERE to purchase this book now. discuss

Multiplying Matrices • 9

http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

2. For every row r in A, and every column c in B:

3. Let Mrc = Ar0 * B0c + Ar1 * B1c + Ar2 * B2c + Ar3 * B3c

As pseudocode, the algorithm might look like this:

function matrix_multiply(A, B)
M ← matrix()

for row ← 0 to 3
for col ← 0 to 3
M[row, col] ← A[row, 0] * B[0, col] +

A[row, 1] * B[1, col] +
A[row, 2] * B[2, col] +
A[row, 3] * B[3, col]

end for
end for

return M
end function

If this all feels kind of familiar, it might be because you’ve already implemented
something very similar—the dot product of two vectors on page ?. Yes, it’s
true. Matrix multiplication computes the dot product of every row-column
combination in the two matrices! Pretty cool.

Now, we’re not done yet. Matrices can actually be multiplied by tuples, in
addition to other matrices. Multiplying a matrix by a tuple produces another
tuple. Start with a test again, like the following, to express what you expect
to happen when multiplying a matrix and a tuple.

features/matrices.feature
Scenario: A matrix multiplied by a tuple

Given the following matrix A:
1	2	3	4
2	4	4	2
8	6	4	1
0	0	0	1

And b ← tuple(1, 2, 3, 1)
Then A * b = tuple(18, 24, 33, 1)

How does it work? The trick begins by treating the tuple as a really skinny
(one column!) matrix, like this:

(1, 2, 3, 1) ⇒









1
2
3
1









Four rows. One column.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbtracer/code/features/matrices.feature
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

It comes together just as it did when multiplying two 4x4 matrices together,
but now you’re only dealing with a single column in the second “matrix.” The
following figure illustrates this, highlighting the row and column used when
computing the value of c10.

1
2
8
0

2
4
6
0

3
4
4
0

4
2
1
1

1
2
3
1

× =

A b c

24

row 1,
col 0

row 1 column 0

To compute the value of c10, you consider only row 1 of matrix A, and column
0 (the only column!) of tuple b. If you think of that row of the matrix as a
tuple, then the answer is found by taking the dot product of that row and the
other tuple:

2× 1 + 4× 2 + 4× 3 + 2× 1 = 24

The other elements of c are computed similarly. It really is the exact same
algorithm used for multiplying two matrices, with the sole difference being
the number of columns in the second “matrix.”

If you’re feeling uncomfortable with how much magic there is in
these algorithms, check out “An Intuitive Guide to Linear Algebra”1

on BetterExplained.com. It does a good job of making sense of this
stuff!

Pause here to make the tests pass that you’ve written so far. Once you have
them working, carry on! We’re going to look at a very special matrix, and we’ll
use multiplication to understand some of what makes it so special.

1. betterexplained.com/articles/linear-algebra-guide

• Click HERE to purchase this book now. discuss

Multiplying Matrices • 11

https://betterexplained.com/articles/linear-algebra-guide
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

