
Extracted from:

The Ray Tracer Challenge
A Test-Driven Guide to Your First 3D Renderer

This PDF file contains pages extracted from The Ray Tracer Challenge, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

The Ray Tracer Challenge
A Test-Driven Guide to Your First 3D Renderer

Jamis Buck

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Brian P. Hogan
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-271-8
Book version: P1.0—February 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Your ray tracer is really starting to come together. Just look at it! You’ve got
spheres, realistic shading, a powerful camera, and a world that supports
scenes with many objects.

It’s a pity those objects don’t cast shadows, though. Shadows add a delightful
dash of realism to a scene. Check out the following figure which shows the
same scene both with and without shadows:

Your brain uses those shadows as cues for depth perception. Without shadows,
the image looks artificial and shallow, and that will never do.

Thus, the time has come to add shadows, and the best part is that you’ve
already written most of the infrastructure to support this. The first step is to
adjust your lighting() function to handle the case where a point is in shadow.
Then you’ll implement a new method for determining whether a point is in
shadow or not, and last you’ll tie those pieces together so your ray tracer
actually renders the shadows.

Let’s dig into it!

Lighting in Shadows
Given some point, you can know that it lies in shadow if there is another
object sitting between it and the light source, as shown in the following figure.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

The light source is unable to contribute anything to that point. Take a moment
and recall how your lighting() function works, from The Phong Reflection Model,
on page ?. The diffuse component relies on the vector to the light source, and
the specular component depends on the reflection vector. Since both components
have a dependency on the light source, the lighting() function should ignore them
when the point is in shadow and use only the ambient component.

Add the following test to the others you wrote for the lighting() function. It’s
identical to the one titled “Lighting with the eye between the light and the
surface” on page ?, where the specular and diffuse components were both
at their maximum values, but this time you’re going to pass a new argument
to the lighting() function indicating that the point is in shadow. It should cause
the diffuse and specular components to be ignored, resulting in the ambient
value alone contributing to the lighting.

(Recall that the m and position variables being passed to the lighting() function
are defined in the “Background” block on page ?.)

features/materials.feature
Scenario: Lighting with the surface in shadow

Given eyev ← vector(0, 0, -1)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 0, -10), color(1, 1, 1))
And in_shadow ← true

When result ← lighting(m, light, position, eyev, normalv, in_shadow)
Then result = color(0.1, 0.1, 0.1)

You may need to fix your other tests to accommodate the addition of that new
parameter. Go ahead and address that, and then make this new test pass as
well by making your lighting() function ignore the specular and diffuse compo-
nents when in_shadow is true.

Once things are all passing again, let’s teach your ray tracer how to tell when
a point is in shadow.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbtracer/code/features/materials.feature
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

Testing for Shadows
A ray tracer computes shadows by casting a ray, called a shadow ray, from each
point of intersection toward the light source. If something intersects that shadow
ray between the point and the light source, then the point is considered to be
in shadow. You’re going to write a new function, is_shadowed(world, point), which will
do just this.

Implement the following four tests, which demonstrate four different scenarios.
Each assumes the existence of the default world that was defined in Building
a World, on page ?.

In the first test, the world is set up like the following figure.

Nothing at all lies along the line connecting the point and the light source,
and the point should therefore not be in shadow.

features/world.feature
Scenario: There is no shadow when nothing is collinear with point and light

Given w ← default_world()
And p ← point(0, 10, 0)

Then is_shadowed(w, p) is false

In the second test, the point is placed on the far side of the default world’s
spheres, putting them between it and the light source, like this:

The point should be in the shadow cast by the spheres.

• Click HERE to purchase this book now. discuss

Testing for Shadows • 7

http://media.pragprog.com/titles/jbtracer/code/features/world.feature
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

features/world.feature
Scenario: The shadow when an object is between the point and the light

Given w ← default_world()
And p ← point(10, -10, 10)

Then is_shadowed(w, p) is true

The next test positions the point so the light lies between it and the spheres.

Once again, the point should not be in shadow, because nothing lies between
the point and the light.

features/world.feature
Scenario: There is no shadow when an object is behind the light

Given w ← default_world()
And p ← point(-20, 20, -20)

Then is_shadowed(w, p) is false

The last test is similar, but it positions the point to lie between the light and
the spheres, like this:

And again, even in this configuration nothing lies between the light and the
point, so the point is still not shadowed.

features/world.feature
Scenario: There is no shadow when an object is behind the point

Given w ← default_world()
And p ← point(-2, 2, -2)

Then is_shadowed(w, p) is false

The algorithm for is_shadowed() goes like this:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jbtracer/code/features/world.feature
http://media.pragprog.com/titles/jbtracer/code/features/world.feature
http://media.pragprog.com/titles/jbtracer/code/features/world.feature
http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

1. Measure the distance from point to the light source by subtracting point
from the light position, and taking the magnitude of the resulting vector.
Call this distance.

2. Create a ray from point toward the light source by normalizing the vector
from step 1.

3. Intersect the world with that ray.

4. Check to see if there was a hit, and if so, whether t is less than distance. If
so, the hit lies between the point and the light source, and the point is in
shadow.

In pseudocode it might look like this:

function is_shadowed(world, point)
v ← world.light.position - point
distance ← magnitude(v)
direction ← normalize(v)

r ← ray(point, direction)
intersections ← intersect_world(world, r)

h ← hit(intersections)
if h is present and h.t < distance

return true
else

return false
end if

end function

Recall from Identifying Hits, on page ?, that the hit() function returns the
intersection with the lowest nonnegative t value. Thus, the hit’s t will never
be negative, so you don’t need to worry about checking for intersections that
occur behind the point.

Implement that function, make those tests pass, and then move on. Just one
more thing needs changing to actually render those shadows!

• Click HERE to purchase this book now. discuss

Testing for Shadows • 9

http://pragprog.com/titles/jbtracer
http://forums.pragprog.com/forums/jbtracer

