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Your ray tracer is really starting to come together. Just look at it! You’ve got
spheres, realistic shading, a powerful camera, and a world that supports
scenes with many objects.

It’s a pity those objects don’t cast shadows, though. Shadows add a delightful
dash of realism to a scene. Check out the following figure which shows the
same scene both with and without shadows:

Your brain uses those shadows as cues for depth perception. Without shadows,
the image looks artificial and shallow, and that will never do.

Thus, the time has come to add shadows, and the best part is that you’ve
already written most of the infrastructure to support this. The first step is to
adjust your lighting() function to handle the case where a point is in shadow.
Then you’ll implement a new method for determining whether a point is in
shadow or not, and last you’ll tie those pieces together so your ray tracer
actually renders the shadows.

Let’s dig into it!

Lighting in Shadows
Given some point, you can know that it lies in shadow if there is another
object sitting between it and the light source, as shown in the following figure.
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The light source is unable to contribute anything to that point. Take a moment
and recall how your lighting() function works, from The Phong Reflection Model,
on page ?. The diffuse component relies on the vector to the light source, and
the specular component depends on the reflection vector. Since both components
have a dependency on the light source, the lighting() function should ignore them
when the point is in shadow and use only the ambient component.

Add the following test to the others you wrote for the lighting() function. It’s
identical to the one titled “Lighting with the eye between the light and the
surface” on page ?, where the specular and diffuse components were both
at their maximum values, but this time you’re going to pass a new argument
to the lighting() function indicating that the point is in shadow. It should cause
the diffuse and specular components to be ignored, resulting in the ambient
value alone contributing to the lighting.

(Recall that the m and position variables being passed to the lighting() function
are defined in the “Background” block on page ?.)

features/materials.feature
Scenario: Lighting with the surface in shadow

Given eyev ← vector(0, 0, -1)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 0, -10), color(1, 1, 1))
And in_shadow ← true

When result ← lighting(m, light, position, eyev, normalv, in_shadow)
Then result = color(0.1, 0.1, 0.1)

You may need to fix your other tests to accommodate the addition of that new
parameter. Go ahead and address that, and then make this new test pass as
well by making your lighting() function ignore the specular and diffuse compo-
nents when in_shadow is true.

Once things are all passing again, let’s teach your ray tracer how to tell when
a point is in shadow.
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Testing for Shadows
A ray tracer computes shadows by casting a ray, called a shadow ray, from each
point of intersection toward the light source. If something intersects that shadow
ray between the point and the light source, then the point is considered to be
in shadow. You’re going to write a new function, is_shadowed(world, point), which will
do just this.

Implement the following four tests, which demonstrate four different scenarios.
Each assumes the existence of the default world that was defined in Building
a World, on page ?.

In the first test, the world is set up like the following figure.

Nothing at all lies along the line connecting the point and the light source,
and the point should therefore not be in shadow.

features/world.feature
Scenario: There is no shadow when nothing is collinear with point and light

Given w ← default_world()
And p ← point(0, 10, 0)

Then is_shadowed(w, p) is false

In the second test, the point is placed on the far side of the default world’s
spheres, putting them between it and the light source, like this:

The point should be in the shadow cast by the spheres.
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features/world.feature
Scenario: The shadow when an object is between the point and the light

Given w ← default_world()
And p ← point(10, -10, 10)

Then is_shadowed(w, p) is true

The next test positions the point so the light lies between it and the spheres.

Once again, the point should not be in shadow, because nothing lies between
the point and the light.

features/world.feature
Scenario: There is no shadow when an object is behind the light

Given w ← default_world()
And p ← point(-20, 20, -20)

Then is_shadowed(w, p) is false

The last test is similar, but it positions the point to lie between the light and
the spheres, like this:

And again, even in this configuration nothing lies between the light and the
point, so the point is still not shadowed.

features/world.feature
Scenario: There is no shadow when an object is behind the point

Given w ← default_world()
And p ← point(-2, 2, -2)

Then is_shadowed(w, p) is false

The algorithm for is_shadowed() goes like this:
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1. Measure the distance from point to the light source by subtracting point
from the light position, and taking the magnitude of the resulting vector.
Call this distance.

2. Create a ray from point toward the light source by normalizing the vector
from step 1.

3. Intersect the world with that ray.

4. Check to see if there was a hit, and if so, whether t is less than distance. If
so, the hit lies between the point and the light source, and the point is in
shadow.

In pseudocode it might look like this:

function is_shadowed(world, point)
v ← world.light.position - point
distance ← magnitude(v)
direction ← normalize(v)

r ← ray(point, direction)
intersections ← intersect_world(world, r)

h ← hit(intersections)
if h is present and h.t < distance

return true
else

return false
end if

end function

Recall from Identifying Hits, on page ?, that the hit() function returns the
intersection with the lowest nonnegative t value. Thus, the hit’s t will never
be negative, so you don’t need to worry about checking for intersections that
occur behind the point.

Implement that function, make those tests pass, and then move on. Just one
more thing needs changing to actually render those shadows!
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