Extracted from:

New Programmer’s
Survival Manual

Navigate Your Workplace,
Cube Farm, or Startup

This PDF file contains pages extracted from New Programmer’s Survival
Manual, published by the Pragmatic Bookshelf. For more information or
to purchase a paperback or PDF copy, please visit http://www.prag-
prog.com .

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions
are black and white. Pagination might vary between the online and
printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com
http://www.pragprog.com

The
ogrammers

New Programmer’s
Survival Manual

Navigate Your Workplace,
Cube Farm, or Startup

Josh Carter

Edited by Susannah Davidson Pfalzer

New Programmer’s

Survival Manual

Navigate Your Workplace,
Cube Farm, or Startup

Josh Carter

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

\ Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http:/pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David] Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-81-4

Printed on acid-free paper.

Book version: P1.0—November 2011

http://pragprog.com

For Daria and Genevieve.

[White Belt] Your effectiveness as a program-
mer is, to a degree, gated by your ability to

work with your team.

In most cases, you'll be one programmer among several,
and like rowing a boat, the sum of efforts depends on every-
one rowing the same direction. This is trite and easy to say.
In practice, coordinating a programming effort is less like
rowing a boat and more like herding cats.

Good programmers are opinionated and strong-willed. Ask
any two programmers to solve a problem, and they’ll solve
it differently. Yet the product depends on several (or many)
programmers working together and creating a cohesive
whole.

Divide and Conquer

The average product requires many talents, and every
programmer has unique skills, interests, and expertise.
Understanding what you bring to the table is essential to
contributing the most to the product.

When you're just starting out, your industry programming
experience is zilch, but you have enthusiasm. OK, let’s work
with that. Is there a part of the product nobody else has
experience in, either? This is usually in the gnarly parts; a
common example is software packaging and field upgrade.
It’s a hairy mess, and nobody wants to touch it. It sounds
like a good place to dig in and earn your stripes.

Taking on gnarly problems is how you build your expertise
and credibility within the team. Sticking with easy parts of
the project doesn’t. (Balance this, however, with some early
wins, as discussed in Tip 17, Be Visible, on page ?.) Look
for credibility builders when the team is divvying up work;
where is an unmet need that you can tackle? Consider the

following group planning meeting:
Manager: Any volunteers for the 3D flying icon rendering tool?
Dave, Emma, Frank (in unison): Me.

Manager: Now what about the part that imports 1986-vintage
DXF files and converts them to our current format?

(crickets chirping)

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

You: IfI take the lead on this one, can someone back me up if I get
stuck?

Frank: I wrote some DXF stuff a long time ago, and then my cat
choked on the floppy disk containing the code, and I'm still very
upset about that, but I should be able to help.

You: OK, I'll take it.

Now you have a gnarly project and also saved Frank—who
would have gotten the assignment otherwise—from a
month’s worth of lament over the fate of his cat.

Pair Programming

Sometimes you set out to tackle a problem and it tackles you
instead. No worries, it happens to all of us. Pair up with
another programmer and try again. Often, a second set of
eyes and a fresh perspective are all it takes to make the
breakthrough you need.

Pair programming is effective enough that some teams always
pair, one typing and the other observing and commenting.
Other teams will work individually and pair only when
someone gets stuck. I'll sometimes do a hybrid, with each
person on a laptop in a common area, each attacking a dif-
ferent aspect of the problem.

If your team doesn’t have an established practice for pairing,
it's usually easy to get some time from a co-worker. Here
are a couple tips:

¢ Try to find someone with experience in the area you're
working in. (“Frank, I heard you know a thing or two
about DXF. Could you watch over my shoulder for a
bit and advise me on this gnarly part of the DXF
importer?”)

* If you need more than a few hours of time, run it by
your manager. (“Can I borrow some of Frank’s time?
I'm in a tough spot and could use his help.”)

The only unacceptable practice is floundering on your own,
not asking for help. Yes, some problems require tedious
investigation that takes a long time. Recognize, however,
when you’'ve gone past the point of diminishing return and
it’s time to get another set of eyes on the problem.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

In the Center of Things

My very best working environment was precisely what most
programmers dread: a low-wall cube in the middle of the office.
I was a couple years into my career, and I wanted to sit with the
main software team, so when a cube opened up—any cube—I
grabbed it.

My new cube was right in the middle, by a common area. Inter-
esting conversations would pop up, and I could participate
effortlessly. I got involved with many parts of the product,
gaining tremendous expertise and credibility very quickly. As
it happens, the easiest way to get in the middle of things is to
physically get in the middle of things.

I've been on the opposite end of the spectrum, too, working in
my basement office a thousand miles away from the rest of my
team. That was the worst job of my career—no matter what, I
couldn't get into the action and participate in the design of the
product.

Americans value the corner office with the window, but my own
experience says the Japanese have it right: the most prized loca-
tion—the location with the most influence—is the one in the
center of things.

Concentration and Interruption

Collaboration necessarily involves both dividing work
between individuals and working together. In most teams,
this is a fluid thing, with unpredictable mixing of alone time
and collaborative time. It's where those meet that can cause
friction.

In programmer-speak, the “context switch overhead”
required to flip between modes can be very high, depending
on the person and the task at hand. Programming often
requires intense concentration, and getting into that state—
the flow or zone—takes time. This is why some companies
give programmers offices to minimize interruptions.

On the other hand, collaboration requires interruption. This
is why other companies put programmers in a large, open
room to maximize collaboration. Both philosophies have
truth to them, but you need to be conscious of the interplay
between concentration and interruption to perform well in
either environment.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

First, when another team member is “in the zone,” try not
to bug them. Closed office doors or headphones are a good
clue. When you need some in-the-zone time, turn off email,
instant messaging, and your cell phone. If your company
culture allows it, work from home or a coffee shop.

Second, get used to interruptions. There’s tremendous value
in collaboration, and shutting your office door shuts you out
of the interactions going on around you. There are a number
of productivity techniques you can use to minimize the
impact of interruptions; Getting Things Done [All02] is a good
place to start.

Actions

Here’s an easy one: most of what we’ve been talking about
boils down to talking. If you're in an office, make it a point
to chat with another programmer each day. Coffee, lunch,
and —in start-ups—dinner should provide ample opportu-
nity to chat. If your company is physically distributed, get
on instant messaging or the phone at least once a day.

The other part is dealing with interruptions. Take a survey
of some productivity techniques—ask your co-workers, read
some blogs, check out David Allen’s book’—and pick one
that you think meets your needs. Try it for four to six weeks;
that’s how long it takes to establish a new habit. If it’s still
more hassle than it's worth after that time, chuck it.

6. Getting Things Done: The Art of Stress-Free Productivity [Al102]

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

