
Extracted from:

New Programmer’s
Survival Manual

Navigate Your Workplace,
Cube Farm, or Startup

This PDF file contains pages extracted from New Programmer's Survival
Manual, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.prag-
prog.com .

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and
printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com
http://www.pragprog.com

New Programmer’s
Survival Manual

Navigate Your Workplace,
Cube Farm, or Startup

Josh Carter

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precautionwas taken in the preparation of this book.However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-81-4
Printed on acid-free paper.
Book version: P1.0—November 2011

http://pragprog.com

For Daria and Genevieve.

[White Belt] Writing code that fails well is

just as important as writing code that works

well.

What happens when code fails? It’s going to. Even if you
wrote your part perfectly, there are all kinds of conditions
that could cause the overall system to fail:

• A roguemail daemon on computer, busy sending offers
of great wealth from some foreign country, consumes
all the RAM and swap. Your next call to malloc() returns
ETOOMUCHSPAM.

• Java Update 134,001 fills up the system’s hard drive.
You call write(), and the system returns ESWITCHTODECAF.

• You try to pull data off a tape, but the tape robot is on
a ship at sea, rolling waves cause the robot to drop the
tape, and the driver returns EROBOTDIZZY.

• Cosmic rays flip a bit in memory, causing a memory
access to return 0x10000001 instead of 0x1, and you dis-
cover that this makes for a very bad parameter to pass
into memcpy() after it returns EMEMTRASHED.

You may think, “Yeah, right” but all these cases actually
happened. (Yes, I had to fix a tape robot controller because
it would drop tapeswhen on aNavy ship.) Your code cannot
naively assume that the world around it is sane—the world
will take every opportunity to prove it wrong.

How your code fails is just as important as how it works.
You may not be able to fix the failure, but if nothing else,
your code should strive to fail gracefully.

Order of Operations

In many textbook programs, their environment is a clean
slate, and the program runs to completion. In many messy,
nontextbook programs, the environment is a rugby match
of threads and resources, all seemingly trying to beat each
other into submission.

Consider the following example: you’re creating a list of
customer names and addresses that will be fed to a label
printer. Your code gets passed a customer ID and a database

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

connection, so you need to query the database for what you
need. You create a linked list whose add()method looks like
this:

Download ListUpdate.rb
def add(customer_id) # BAD BAD BAD, see text
begin

@mutex.lock
old_head = @head
@head = Customer.new
@head.name =

@database.query(customer_id, :name)
@head.address =

@database.query(customer_id, :address)
@head.next = old_head

ensure
@mutex.unlock

end
end

(Yes, I know this example is contrived. Bear with me.)

This code works in the happy path: the new element is put
at the head of the list, it gets filled in, and everything is
happy. But what if one of those queries to the database
raises an exception? Take a look at the code again.9

This code doesn’t fail gracefully. In fact, it does collateral
damage by allowing a database failure to destroy the cus-
tomer list. The culprit is the order of operations:

• The list @head and @head.next are absolutely vital to the
list’s integrity. These shouldn’t be monkeyed with until
everything else is ready.

• The newobject should be fully constructed before insert-
ing into the list.

• The lock should not be held during operations that could
block. (Assume there’s other threads wanting to read
the list.)

9. Answer: First, the head of the list has already been set to the new
element, so the head will have at least one blank field. Second,
the rest of the list will vanish because head.next gets updated only
after the database queries. And bonus badness: the list stays locked
for the duration of the database queries—operations that could
take an indeterminate amount of time to complete.

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jcdeg/code/ListUpdate.rb
http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

Transactions

In the previous section, the example had only one essential
bit of state that needed to stay consistent. What about cases
where there’s more than one? Consider the classic example
of moving money between two bank accounts:

Download Transaction.rb
savings.deduct(100)
checking.deposit(100)

What happens if the database croaks right after the money
has beendeducted and the deposit into checking fails?Where
did the money go? Perhaps you try to solve that case by
putting it back into the savings account:

Download Transaction.rb
savings.deduct(100) # Happily works

begin
checking.deposit(100) # Fails: database went down!

rescue
begin

Put money back
savings.deposit(100) # Fails: database still dead

rescue
Now what???

end
end

Nice try, but that doesn’t help if the second deposit() fails,
too.

The tool you need here is a transaction. Its purpose is to allow
several operations, potentially to several objects, to be either
fulfilled completely or rolled back.

Transactions (here in a made-up system) would allow our
previous example to look like this:

Download Transaction.rb
t = Transaction.new(savings, checking)
t.start

Inject failure
checking.expects(:deposit).with(100).raises

begin
savings.deduct(100)
checking.deposit(100)
t.commit

rescue

• Click HERE to purchase this book now. discuss

• 7

http://media.pragprog.com/titles/jcdeg/code/Transaction.rb
http://media.pragprog.com/titles/jcdeg/code/Transaction.rb
http://media.pragprog.com/titles/jcdeg/code/Transaction.rb
http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

t.rollback
end

You’ll usually find transactions in databases, because our
example scenario is exceedingly common in that field. You
may find variations on this theme anywhere systems require
an all-or-nothing interlock.

Failure Injection

So far, we’ve talked about how your code responds to likely
failures. For purposes of testing, how do you ensure your
code responds well when an essential resource dies, passes
on, is nomore, ceases to be, pushes up daisies, and becomes
an ex-resource?

The solution is to inject failures using an automated test
harness. This is easiest with a mock object framework,
because you can tell the mock to return good data several
times and then return something bogus or throw an excep-
tion. Likewise, in the code under test, you assert that the
appropriate exception is raised.

Revisiting our list update problem, here’s some test code
that simulates a valid database response for key 1 and a
failure on the query for key 2:

Download ListUpdate2.rb
require 'rubygems'
require 'test/unit'
require 'mocha'

class ListUpdateTest < Test::Unit::TestCase
def test_database_failure

database = mock()
database.expects(:query).with(1, :name).

returns('Anand')
database.expects(:query).with(1, :address).

returns('')
database.expects(:query).with(2, :name).

raises①

q = ShippingQueue.new(database)
q.add(1)

assert_raise(RuntimeError) do
q.add(2)②

end

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jcdeg/code/ListUpdate2.rb
http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

List is still okay
assert_equal 'Anand', q.head.name③

assert_equal nil, q.head.next
end

end

① Injection of RuntimeError exception.

②Call will raise; the assert_raise is expecting it (and will trap
the exception).

③ Verify that the list is still intact, as if q.add(2) were never
called.

Failure injection of this sort allows you to think
through—and verify—each potential scenario of doom. Test
in this manner just as often as you test the happy path.

Test Monkeys

You can think through scenarios all day long and build
tremendously robust code. Yet most fool-proof programs
can be foiled by a sufficiently talented fool. If you don’t have
such a fool handy, the next best thing is a test monkey.

In my first job working on handheld computers, we had a
program called Monkey that would inject random taps and
drags into the UI layer, as if they had come from the touch-
screen. There was nothing fancier than that. We’d run
Monkey until the system crashed.

Monkey may not have been a talented fool, but a whole
bunch of monkeys tapping like mad, 24 hours a day, makes
up for lack of talent. Alas, no Shakespeare (but perhaps some
E. E. Cummings) and awhole bunch of crashes. The crashes
were things we couldn’t have envisioned—that was the
point.

In the same way, can you create a test harness that beats the
snot out of your programwith random (but valid) data? Let
it run thousands ormillions of cycles; you never knowwhat
might turn up. I used this technique on a recent project and
discovered that once in a blue moon, a vendor API function
would return “unknown” for the state of a virtual machine.
What do they mean, they don’t know the state? I had no idea
the function could return that. My program crashed when
it happened. Lesson learned…again.

• Click HERE to purchase this book now. discuss

• 9

http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

Actions

Revisit the previous codewith the customer list. Howwould
you fix it? Here’s a shell to work with:

Download ListUpdate2.rb
require 'thread'

class Customer
attr_accessor :name, :address, :next

def initialize
@name = nil
@address = nil
@next = nil

end
end

class ShippingQueue
attr_reader :head

def initialize(database)
@database = database
@head = nil
@mutex = Mutex.new

end

def add(customer_id)
Fill in this part

end
end

Use the test code from Failure Injection, on page 8 to see
whether you got it right.

10 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jcdeg/code/ListUpdate2.rb
http://pragprog.com/titles/jcdeg
http://forums.pragprog.com/forums/jcdeg

