
Extracted from:

A Scrum Book
The Spirit of the Game

This PDF file contains pages extracted from A Scrum Book, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

A Scrum Book
The Spirit of the Game

Jeff Sutherland
James O. Coplien

Lachlan Heasman
Mark den Hollander

Cesário Oliveira Ramos

and The Scrum Patterns Group:

Esther Vervloed, Neil Harrison, Kiro Harada, Joseph Yoder,
June Kim, Alan O'Callaghan, Mike Beedle, Gertrud Bjørnvig,

Dina Friis, Ville Reijonen, Gabrielle Benefield, Jens Østergaard,
Veli-Pekka Eloranta, Evan Leonard, and Ademar Aguiar

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Adaobi Obi Tulton
Copy Editor: Sean Dennis
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-671-6
Book version: P1.0—August 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

¶10 Cross-Functional Team
Confidence stars: **

The team as a whole should embody all the talent necessary to deliver product.

...the ¶7 Scrum Team is organizing its development effort, and are choosing
team members, or are assessing how to grow the team skill set.

The Scrum Team is not able to work autonomously because it does not
have all the skills required to complete a complex network of tasks. By
depending on skills from people outside the team, the team cannot take
ownership for finishing their tasks. It reduces the team’s influence on the
time it takes to finish and can tarnish the quality of the end result. The core
lean principles of consistency and reduced rework depend on short feedback
loops. Most complex development requires people with numerous talents from
areas as diverse as human factors, engineering excellence, and quality
assurance. It is rare that one finds all these talents in members of a single
team, let alone in any given individual. Teams often organize around areas
of competence: birds of a feather flock together. This is sometimes called a
functional organization. Yet, it is costly to coordinate these functions across
team boundaries because efficient communications take place between those
who share the context of the current work—and that is usually the team
members.

A complex product might require that the team has mastered numerous skills
to develop Done functionality (see ¶82 Definition of Done). When work calls

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcscrum
http://forums.pragprog.com/forums/jcscrum

for an additional individual for each required skill, the team will become too
big to be effective. You might be tempted to not extend the skill set in the
team and to instead introduce external dependencies. On the other hand,
you might choose to give the work to the team so they can develop and learn
the required skill. But learning takes time.

Local learning can become local optimization, where a group of specialists
develop practices and processes that optimize their work. Specialization, local
practices and processes can all be sources of efficiency in an organization,
but can also create problems at the group boundary. To attack these problems,
an organization can define “contracts” outlining how to work with each other
(e.g., service requests). Such contracts might specify the nature of the work
that an organization is willing to do along with expected durations for
responses to requests. Anyone needing the group’s specialization would have
to use these contracts. However, this can slow development of the product
as a whole even though it increases the efficiency of the local department.
Again, there may be a need for additional coordination groups within the
organization to manage these boundary contracts, to negotiate exceptions or
ensure all parties understand what is required, and to make sure each team
meets its obligations to other teams—and to the customer, according to the
obligations of these contracts.

New products—or new versions of existing products—each create a new world
for their customers. Because you cannot know in advance what this new
world will be like, you must focus on learning and experimentation as the
product evolves. The team must find lessons in its experience with actual
customer use of each product increment rather than according to some pre-
arranged plan. And the team must integrate these lessons across the product
development process. Everyone recognizes the advantages of local flow,
autonomy, and control that come from working as an individual within a step
of the process or within a functional area. However, such a work structure
moves everyone (except the person doing the last step) further from the end
user and the broad insights that come from interactions at that boundary.
This may result in suboptimal local functions but greater optimization across
the entire product development process.

Therefore:

Each Scrum Team should include all talent necessary to deliver Done
functionality.

It’s good to pay attention to skill set coverage when initially creating the team,
but it’s more important that the charter team members share enthusiasm for

• Click HERE to purchase this book now. discuss

¶10 Cross-Functional Team • 9

http://pragprog.com/titles/jcscrum
http://forums.pragprog.com/forums/jcscrum

the ¶39 Vision and that they have a track record of learning new things.
Because things change over time, it is unlikely that the team will be able to
foresee all its long-term skill needs from the beginning.

Instead of changing team membership as the need for new skills emerges,
grow the people internally and strive for ¶9 Small Teams and ¶15 Stable
Teams. Over time, cross-train team members so they grow their skill sets to
accommodate more and more competency areas (see ¶123 Moderate Truck
Number on page ?). This will increase the ability of the team to work as an
¶16 Autonomous Team. With Cross-Functional Teams it becomes easier to
¶131 Distribute Work Evenly on page ?.

The team members now have all the opportunities to learn secondary skills.
They can swarm (see ¶25 Swarming: One-Piece Continuous Flow) on ¶55
Product Backlog Items (PBIs), which increases learning opportunities and
optimizes flow to help get functionality to Done fast. The development of sec-
ondary skills makes the team more flexible so any member can stand in for
another that has become unavailable. The team always makes progress and
is autonomous.

Scrum is silent on how to handle a missing competency. Let common sense
prevail; for example, ask for help from another team, or subcontract large work
increments that might surprise the team. It is understandable if the team needs
such help now and then. But if the team finds they frequently depend on
external help, then they should view this as an impediment and take measures
(such as training, reorganization, or hiring) to remedy the situation.

For example, a team of software programmers may find themselves building
a product in an area outside their native expertise, such as pharmaceuticals
or aerospace. It is tempting to appoint a person on the team for each of the
underrepresented competencies, perhaps by consulting with an external
domain expert. However, the team representative may not know how much

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcscrum
http://forums.pragprog.com/forums/jcscrum

they don’t know, and may not even know what questions to ask the domain
experts. Most domain experts carry domain expertise as tacit knowledge, so
they are not in a position to recover the right insights to support the software
person in a proper implementation. It is crucial that team members under-
stand the implications of domain considerations on the implementation and
have a thorough knowledge of both the business and solution space. In a
recent article, Jesse Watson of Amazon noted that it’s crucial that both of
these factors co-exist “within one skull.”13 It is better to bring the expert on
board to the team and to broaden the knowledge with cross-training. But
remember Small Teams : adding specialists may grow the team to a point
where teamwork diminishes to almost nothing.

These teams naturally act like “feature teams” (see ¶4 Conway’s Law) because
most PBIs are feature-shaped: marketable elements of revenue-generating
functional product increment. If Cross-Functional Teams develop the product,
then handoffs naturally disappear from the ¶41 Value Stream: the team itself
can develop any feature without outside support or intervention. Involving
multiple teams introduces delays in feedback loops, increases the waste
(muda) of rework, and creates inconsistency (mura) between development
stages in the Value Stream .

A study published in the Harvard Business Review of two corporations, one
organized functionally and the other by product, suggests that cross-functional
teams offer the best features of both organizational structures (see “Organiza-
tional Choice: Product vs. Functionˮ in Harvard Business Review 46 [WL68]).

¶42 Set-Based Design is a technique that keeps developers engaged in many
disciplines and domains that may be relevant to the business, even if they
ultimately don’t make it through to the current product. Such practice
broadens the expertise base of the team and enterprise and reduces the
probability that the team will be surprised by the need to master some new
discipline.

As the team integrates new lessons there will be new product ideas. Change
will proceed quickly (and must be allowed to proceed quickly). Change will
be the norm rather than the exception. This requires small organizations
where everyone knows what is happening: organizations that can embrace
change, work across specializations, regularly deliver value and are, for want
of another term: agile.

13. Jesse Watson. “The Hard Thing about Software Development.” LinkedIn.com,
https://www.linkedin.com/pulse/hard-thing-software-development-jesse-watson, 12 July 2017 (accessed
4 July 2018).

• Click HERE to purchase this book now. discuss

¶10 Cross-Functional Team • 11

https://www.linkedin.com/pulse/hard-thing-software-development-jesse-watson
http://pragprog.com/titles/jcscrum
http://forums.pragprog.com/forums/jcscrum

A Game
Assemble several small teams who will compete in a game to make and fly
paper airplanes. Each team member may make only one fold at a time, and
then must switch to work on another plane. No plane may have more than
15 folds. It must be at least 15 centimeters long and 8 centimeters wide. It
must have a blunt tip at least 2 centimeters wide. To qualify as a quality
product the plane must fly 3 meters horizontally when the tester tests it. The
tester may test each plane only once.

Try the game, and apply Scrum patterns (hint: Swarming: One-Piece Con-
tinuous Flow) to optimize the number of quality planes produced in a one-
minute Sprint.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jcscrum
http://forums.pragprog.com/forums/jcscrum

