Extracted from:

Programming Elm
Build Safe and Maintainable Front-End Applications

This PDF file contains pages extracted from Programming Elm, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Build Safe and
Maintainable

Front-End
Applications

Jeremy. Fairbank
edited by Brian -MacDonald =

Tl

Programming Elm
Build Safe and Maintainable Front-End Applications

Jeremy Fairbank

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Brian MacDonald
Copy Editor: Sean Dennis

Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-285-5
Book version: P1.0—June 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Safely Decode JSON

Prior to this point, you've been able to stay safely within the confines of Elm’s
magical world of static types. However, you're going to run into an interesting
dilemma if you want to accept an arbitrary JSON payload from a server. Elm
doesn’t have a JSON.parse function like JavaScript because it can’t dynamically
create records like JavaScript can create objects. In this section, you're going
to learn about JSON decoders, why they're important, and how to use them
to safely convert JSON into a static type EIm can use.

Understand the Problem

To understand why you need JSON decoders, let’s look at a couple of example

{
"id": 1,
"url": "https://programming-elm.surge.sh/1.jpg",
"caption": "Surfing",
"liked": false,
"comments": ["Cowabunga, dude!"],
"username": "surfing usa"
}

This JSON closely mimics the photo record type you created in the previous
chapter. The only differences are that the JSON payload has an id property
and a username property and lacks a newComment property. You could easily fix
your static type to include id and username fields. The newComment property also
isn’t a problem because you only use it locally to temporarily store a typed
comment.

Even with those changes, you still can’t trust an arbitrary API payload. Elm
is pure and safe, and some of its guarantees come from guarding your appli-
cation from the outside world. If the JSON payload doesn’t match what’s
expected in the record type, you will have a serious problem. For example,
let’s assume the API returned this JSON payload.

{
"id": 1,
"src": "https://programming-elm.surge.sh/1.jpg",
"caption": null,
"liked": "no"
}

« Click HERE to purchase this book now. discuss

https://programming-elm.com/feed/1
https://programming-elm.com/feed/1
http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

°6

This hardly matches your record type. The caption property is null instead of a
string, the liked property is a string with the value "no" instead of the boolean
false, and the comments property is missing.

Elm is caught in a catch-22. Elm requires the payload to have a specific shape
but must protect your application from inconsistent, bad data. By shape, I
mean a payload that contains specific properties with specific types.

Elm solves this dilemma with JSON decoders. When you create a JSON
decoder, you describe the expected shape of the JSON payload and what
static type to create from the payload. Elm uses your decoder to attempt to
decode the JSON payload into your static type. You will work through creating
a JSON decoder for your application over the next few sections.

Initial Setup

Before you create a decoder, let’s get a few prerequisite steps out of the way.
Later in this chapter, you're going to change the Model type in your Picshare
application from a photo to a record that contains the photo. This means you
need to create a new type alias to represent a photo. You also need to add
the id field to your record type because your application will fetch multiple
photos (in the next chapter). You’ll handle the username field in Chapter 10,
Build Single-Page Applications, on page ?.

Open up your Picshare.elm file. Rename the Model type alias to Photo and then
create a new Model type alias to the Photo type. The type alias rabbit hole can
go as deep as you want, but be wary, there be dragons down that hole.

While you're at it, create a type called Id that aliases to Int. This will help make
your later type annotations more readable when you want to treat an Int
argument as an Ild. Right underneath your imported modules, you should
now have this code:

communicate/Picshare01.elm
type alias Id =
Int

type alias Photo =

{ id : Id

, url : String

, caption : String

, liked : Bool

, comments : List String
newComment : String

type alias Model =

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jfelm/code/communicate/Picshare01.elm
http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

Safely Decode JSON ¢ 7

Photo

Because you added an id field to the Photo type, you'll need to add an initial id
to your initialModel to ensure your application can still compile. Add an id of 1
at the start of the initialModel definition:
initialModel =

{id =1

-- other fields you already defined

}

The first step is out of the way. The next prerequisite step is to grab a couple
of packages.

Elm has its own package manager that you can use to install additional
dependencies.

Elm should have previously installed Elm’s main JSON package elm/json as
an indirect dependency when you ran elm init in the first chapter. An indirect
dependency is a dependency of some other dependency in your application.
You need to install elm/json as a direct dependency to let your application
code use it. Make sure you're in your picshare directory and run this command:

elm install elm/json

The command should prompt you to move the dependency from indirect to
direct dependencies. Accept the prompt.

I found it in your elm.json file, but in the "indirect" dependencies.
Should I move it into "direct" dependencies for more general use? [Y/n]:

Next, install a really helpful package called NoRedInk/elm-json-decode-
pipeline, which has a lot of cool helper functions for building complex JSON
object decoders:

elm install NoRedInk/elm-json-decode-pipeline
The command should prompt you to add the dependency to elm.json. Accept.

Great...you just learned how to install packages. You can browse all available

decoder. But before you jump in, let’s get your feet wet in the REPL with some
simpler decoders.

Play with Decoders

Writing a full-fledged decoder for the Photo type will be relatively easy and
require little code. Understanding the code will be the challenging part. Let’s
get familiar with decoders by playing with some primitive decoders before you

« Click HERE to purchase this book now. discuss

https://package.elm-lang.org
http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

°8

attempt to decode a photo object. Open up the Elm REPL and import the
Json.Decode module.

> import Json.Decode exposing (decodeString, bool, int, string)

The Json.Decode module comes from the elm/json package and contains a few
primitive type decoders as well as helper functions for building complex
decoders. The primitive decoders you use here are bool, int, and string. As you
might imagine, the bool decoder represents Bool types, the int decoder represents
Int types, and the string decoder represents String types. Elm has one more
primitive decoder called float.

Each of these primitive decoders has the type Decoder a. The type variable a
refers to the static type that the decoder decodes to. For example, string has
the type Decoder String, so it would decode to an Elm String.

The decodeString function uses a decoder to decode a raw JSON string into a
static type. Let’s create an int decoder and try it out with the number 42. Run
this in the REPL:

> decodeString int "42"
Ok 42 : Result Json.Decode.Error Int

The first argument is the int decoder. The next argument is the JSON string
"42". The return value is interesting, however. You didn’t get back 42. Instead,
you received Ok 42 with the type Result Json.Decode.Error Int. Before you investigate
that further, run this snippet in the REPL:

> decodeString int "\"Elm\""
Err (Failure ("Expecting an INT") <internals>) : Result Json.Decode.Error Int

This time you received a value called Err with the same type as before, Result
Json.Decode.Error Int. The Err value contains a Failure value with a string message
"Expecting an INT". (The <internals> bit refers to the raw JavaScript that Elm parsed.
Elm uses JavaScript’s JSON.parse underneath the hood to initially parse to
JavaScript before decoding to a type in Elm.)

The Result type is how Elm safeguards applications from bad JSON payloads.
When you called decodeString, you declared that the payload was an integer,
but you passed in the JSON string "\"Elm\"" instead of a number. The decode
operation failed and gave back an error from the Result type.

The Result type is a built-in custom type with two constructors called Ok and
Err. This is how it’s defined in Elm.

type Result error value
= 0k value
| Err error

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

Safely Decode JSON ¢ 9

In the last chapter, you saw how custom type constructors could take argu-
ments when you defined the UpdateComment String constructor. The argument
type doesn’t have to be set in stone, so you can use a type variable. If you
use a type variable, then Elm’s type system requires you to declare the type
variable on the type itself too. The Result type has two type variables called
error and value.

In Elm, you use the Result type to handle an operation that could succeed or
fail. If the operation succeeds, you can use the Ok constructor to wrap the
successful value. Conversely, if the operation fails, you can use the Err construc-
tor to wrap an error.

The decodeString function returns the Result type to signal that the decoding
process could fail, specifically if the JSON payload type doesn’t match the
decoder type. If the decoding process succeeds, then you get Ok with the
actual decoded value. If the decoding process fails, then you get Err with a
value explaining the error. You saw both of those scenarios just a moment
ago when you tried decodeString with the JSON strings "42" and "\"EIm\"".

The Result type satisfies the type system so you can safely decode without any
runtime errors. The Result type’s two type variables indicate the static types
it can contain. In the REPL example, the returned type was Result Json.Decode.Error
Int. The Json.Decode.Error and Int types indicated that the result could contain a
decoder error or a successful integer value.

The Json.Decode.Error type is another custom type defined in the Json.Decode
module. You will work more with Json.Decode.Error in Chapter 7, Develop, Debug,

it from the docs.!

I know what you're probably thinking. It’s all well and good that my application
won’t blow up, but I still need to access the successful value. That's what
pattern matching is for. In fact, you’ll see how to use pattern matching on
the Result type later in this chapter when you actually fetch a photo from an
API. For now, play with a few more primitive decoders in the REPL before you
move on to decoding objects.

> import Json.Decode exposing (decodeString, bool, field, int, list, string)

> decodeString bool "true"
Ok True : Result Json.Decode.Error Bool

> decodeString string "\"Elm is Awesome\""
Ok ("Elm is Awesome") : Result Json.Decode.Error String

1. https://package.elm-lang.org/packages/elm/json/latest/Json-Decode#Error

« Click HERE to purchase this book now. discuss

https://package.elm-lang.org/packages/elm/json/latest/Json-Decode#Error
http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

> decodeString (list int) "[1, 2, 3]"
Ok [1,2,3] : Result Json.Decode.Error (List Int)

> decodeString (field "name" string) """{"name": "Tucker"}"""
Ok "Tucker" : Result Json.Decode.Error String

The bool and string decoders are similar to the int decoder you used earlier. You
also imported two helper decoders called field and list that build decoders from
other decoders.

The list decoder lets you decode a JSON array. It accepts a decoder argument
to decode each item in the array. This means every item in the array needs
to be the same type, or decoding will fail.

The field decoder lets you decode the value of a property in a JSON object. It
takes two arguments, the property name and a decoder for the property. This
decoder will fail if the JSON string doesn’t contain an object, if the property
is missing, or if the property type doesn’t match the decoder property type.
You generate the JSON string with triple quote """ syntax. This syntax allows
you to create special strings that don’t require escaping quotes inside the
string. It also lets you create multiline strings like so.

myElmPoem =

Roses are red
Violets are blue
Elm is awesome
And so are you

Elm has more decoder helpers that you can explore in the docs.” For example,
the at helper is great for extracting deeply nested object values, and the oneOf
helper is great for trying multiple decoders until one succeeds. Try out a few
other decoders on your own in the REPL.

Pipe through Functions

Before we go further with decoders, we need to briefly detour to look at Elm’s
most useful operator, the pipe operator. You will need the pipe operator to
create object decoders with elm-json-decode-pipeline.

One benefit of functional programming is that you can combine small, spe-
cialized functions to create more complex functions. Functional programmers
call this function composition.

2. https://package.elm-lang.org/packages/elm/json/latest/Json-Decode

« Click HERE to purchase this book now. discuss

https://package.elm-lang.org/packages/elm/json/latest/Json-Decode
http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

Safely Decode JSON ¢ 11

Let’s say you need to write a function called excitedGreeting that accepts a String
name and returns a greeting with the name in uppercase and ends with an
exclamation point. You can create this function with smaller functions. Inside
the REPL, add the greet and exclaim functions like the following:

> greet name = "Hello, " ++ name
<function> : String -> String

> exclaim phrase = phrase ++ "!"
<function> : String -> String

The greet function takes a String name and prepends the String "Hello, " to it. The
exclaim function takes a String phrase and appends an exclamation point to it.

Now, along with the built-in String.toUpper function, create the excitedGreeting
function like so:

> excitedGreeting name = \
| exclaim (greet (String.toUpper name))
<function> : String -> String

You compose the three functions together by passing in the result of one
function as the argument to the next function. First, you call String.toUpper with
name. This returns name in uppercase, which you then pass into greet. Finally,
you pass the result of greet into exclaim. Try out excitedGreeting like so:

> excitedGreeting "Elm"
"Hello, ELM!" : String

Composition lets you build more complex functions but the syntax is awkward
right now. Notice that you wrapped function calls in parentheses to enforce
the order of operations. If you had left out parentheses, Elm would have
thought you wanted to call exclaim with three arguments, greet, String.toUpper,
and name.

The pipe operator fixes this problem by giving you more readable composition.
Rewrite excitedGreeting in the REPL, like this:
> excitedGreeting name = \

| name |> String.toUpper |> greet |> exclaim
<function> : String -> String

The pipe operator |> takes the left operand and passes it in as the last argu-
ment to the function operand on the right. In this case, you take name on the
left and pass it into String.toUpper on the right. Then, you pass the result of
String.toUpper into greet on the right. You repeat this process, passing the next
result into exclaim.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

°12

This style of composition simulates chaining or piping function calls together.
You can think of the pipe operator as a chain link between each function.
The pipe operator also points to the right, so you can clearly see the direction
of applied functions to the previous result. You can even improve readability
by placing each function call on a newline:

> excitedGreeting name = \

| name \

| |> String.toUpper \

| |> greet \

| |> exclaim

<function> : String -> String

Now you can scan from top to bottom to see each step you take to transform
the name argument into the final result. Call excitedGreeting again with "EIm", and
you should see the same return value as before.

Decode an Object

Great. You're now familiar with the concept of decoders, know how to build
some simple decoders, and know how to use the pipe operator. You're ready
to go a step further and decode an entire JSON object. The elm-json-decode-
pipeline package will come in handy here.

Let’s revisit the dog record from the previous chapter to build a JSON dog
decoder. Once you get a handle on that, you'll be ready to build a decoder for
the Photo type in the Picshare application. Make sure your REPL is open and
expose these members of the Json.Decode and Json.Decode.Pipeline modules:

> import Json.Decode exposing (decodeString, int, string, succeed)
> import Json.Decode.Pipeline exposing (required)

You've already seen the Json.Decode module. The Json.Decode.Pipeline module comes
from elm-json-decode-pipeline. You expose a helper called required. Next, you
need a helper function for creating a dog. Run this in the REPL:

> dog name age = { name = name, age = age }
<function> : a ->b -> { age : b, name : a }

You will need this function to build a dog decoder. Create the dog decoder by
running this code in the REPL:

> dogDecoder = \

| succeed dog \

| |> required "name" string \

| |> required "age" int

<internals> : Json.Decode.Decoder { age : Int, name : String }

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

Safely Decode JSON ¢ 13

Here’s where the fun begins, so let’s dissect the dogDecoder piece by piece. On
the first line, you call the succeed function from Json.Decode on the dog function.
The succeed function creates a decoder literal. For example, if you call succeed
on the string "EIm", then you get back a Decoder String. For the dog function, you
get back a Decoder (a->b->{ age: b, name:a }). Essentially, you get back a decoder
of whatever you pass in, even if it’s a function like dog.

On the next line, you use the pipe operator to feed the decoder into the required
function. The required function comes from elm-json-decode-pipeline and
resembles the field function you used earlier. It requires a property to exist in
the JSON object just like field. It's different from field in that it not only extracts
the property but also applies the value to the function inside the current
decoder. Look at the type signature of required to see what I mean.

required : String -> Decoder a -> Decoder (a -> b) -> Decoder b

The first argument is a String, which is the name of the property. You used
"name" for the property name in the dog example. The second argument is a
Decoder a that expects the property to have a type of a. Recall that lowercase
types such as a are type variables, so this can be a Decoder of anything. You
used the string decoder in the dogDecoder example, so the concrete type you
pass in will be Decoder String. The third argument is another decoder that con-
tains a function. This inner function must translate the type a to the type b.
This translation process allows required to return a Decoder b.

In this example, the third argument is the decoder that contains the dog
function. If you had only run the first two lines from the example, your decoder
would now have this type.

Decoder (a -> { age : a, name : String })

Compare that type to what you had previously from executing only the first
line of the example.

Decoder (a -> b -> { age : b, name : a })

Notice that you filled in the first type variable to be a String. That is, you went
from a function with two arguments to a function with one argument.

Moving to the third line in the example, you call the required function with the
string "age", the int decoder, and the current dog decoder. The dog decoder
can now extract the age property and apply it as the second argument to the
original dog function, which gives you the following final decoder.

Decoder { age : Int, name : String }

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

° 14

The elm-json-decode-pipeline package makes decoders easy to read and write.
The trick to understanding them is to remember that each pipe operation is
applying an extracted value to a function inside a decoder. Once you satisfy
all the arguments, you get back a decoder of the record you want to create.
Let’s try your newly minted dogDecoder on an actual JSON object. Run this
code in the REPL:

> decodeString dogDecoder """{"name": "Tucker",
Ok { age = 11, name = "Tucker" }
: Result Json.Decode.Error { age : Int, name : String }

ageu . 11}u nn

Good job! You just grasped one of the trickiest concepts in Elm. Decoders are
versatile and powerful. You can build some highly complex decoders in Elm.

Create a Photo Decoder

Now that you're familiar with elm-json-decode-pipeline, let’s use it to create
a photo decoder. Switch back to editing Picshare.elm. First, import Json.Decode
and Json.Decode.Pipeline underneath the other imported modules:

communicate/Picshare01.elm
import Json.Decode exposing (Decoder, bool, int, list, string, succeed)
import Json.Decode.Pipeline exposing (hardcoded, required)

These module imports look similar to what you had in the REPL. You import
one additional function from Json.Decode.Pipeline called hardcoded. Next, add the
decoder below the Model type alias:

photoDecoder : Decoder Photo
photoDecoder =
succeed Photo

|> required "id" int
|> required "url" string
|> required "caption" string
|> required "liked" bool
|> required "comments" (list string)
|> hardcoded ""

This decoder resembles the dogDecoder you wrote in the REPL earlier with a
couple of differences. First, you call succeed on Photo, which may seem confusing
at first. You're not calling succeed on the Photo type but the Photo constructor
JSunction. Recall from Chapter 3, Refactor and Enhance Elm Applications, on

the record.

As you saw in the previous section, you can call succeed on a function and
then pipe the decoder through elm-json-decode-pipeline helper functions to
extract properties and apply them to the underlying function. Here you're

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jfelm/code/communicate/Picshare01.elm
http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

Safely Decode JSON ¢ 15

doing exactly that, only you're capitalizing on the convenient constructor
function that Elm creates for record type aliases.

You pipe the constructor function through several calls to required with different
decoders. For the "id" property you use the int decoder. For the "url" and "caption"
properties you use the string decoder. For the "liked" property you use the bool
decoder. Finally, for the "comments" property you use list string. Remember that
the list decoder takes another decoder as an argument to decode each item
in the JSON array to that inner decoder’s type.

At the end, you use the hardcoded function. The Photo record has six fields,
which means the Photo constructor function takes six arguments. One of those
fields is newComment, which the JSON payload on page 5 lacks. You can use
the hardcoded function to tell the decoder to use a static value as an argument
to the underlying decoder function instead of extracting a property from the
JSON object. In this case, you use hardcoded to provide the empty string as

the final newComment argument to the Photo constructor function.

Let’s try out photoDecoder in the REPL to confirm it works. Temporarily expose
photoDecoder from Picshare.elm:

module Picshare exposing (main, photoDecoder)

Make sure you're in the same directory as the Picshare.elm file and run this
code in a new REPL session:

> import Picshare exposing (photoDecoder)
> import Json.Decode exposing (decodeString)

> decodeString photoDecoder """ \

I { "id": 1\

| , "url": "https://programming-elm.surge.sh/1.jpg" \
| , "caption": "Surfing" \

I , "liked": false \

| , "comments": ["Cowabunga, dude!"] \

I A

|

0k { caption = "Surfing"

, comments = ["Cowabunga, dude!"]

, id =1

, liked = False

, newComment = ""

, url = "https://programming-elm.surge.sh/1.jpg"

: Result.Result Json.Decode.Error Picshare.Photo

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

*16

You import photoDecoder from the Picshare module and import decodeString from the
Json.Decode module. Then you apply the photoDecoder to a JSON object to get back
an instance of the Photo record. Revert the Picshare module to only expose main.

Let’s recap what you accomplished. You created a photo decoder by calling
the succeed function from Json.Decode with the Photo constructor function and
then piping the decoder through the required and hardcoded helper functions
from Json.Decode.Pipeline. Each helper function applies the next argument to the
Photo constructor function. The required function extracts a property from the
JSON object and uses that as the argument to Photo. The hardcoded function
uses whatever argument it receives as the argument to Photo. The successive
application of each argument eventually builds up an entire Photo record.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

Safely Decode JSON ¢ 17

One important note to add is that the order of the piping operations matters.
The order needs to match the order of the arguments to the constructor
function. For example, if you switched the order of the id and url field decoders,
you would get a compiler error. That's because the decoder would think it
needs to call the constructor function with a String first instead of an Int.

OK. You've learned a lot about decoders and why they’re important. You've
also successfully created a photo decoder. You're now ready to put it to use
by fetching an initial photo from an API. Make sure your code matches
code/communicate/Picshare0l.elm at this point, and then let's get to work using
HTTP in the application.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

