
Extracted from:

Test-Driven Development for
Embedded C

This PDF file contains pages extracted from Test-Driven Development for Embedded
C, published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Test-Driven Development for
Embedded C

James W. Grenning

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

The spy is on a covert operation. It intercepts the inputs destined for the
production code, later providing it to the test case. As part of its covert mission,
it may also feed return results to the client code, getting the CUT to do the
test’s bidding. Very sneaky indeed.

After setting up the initial LightScheduler files (I use the shell scripts provided
with CppUTest to create the initial files), write a test case that helps you
envision the roles of the LightControllerSpy and FakeTimeService in the testing of
LightScheduler. This tests helps you decide what facilities are needed in the test
fixture.

tests/HomeAutomation/LightSchedulerTest.cpp
TEST(LightScheduler, ScheduleOnEverydayNotTimeYet)
{

LightScheduler_ScheduleTurnOn(3, EVERYDAY, 1200);
FakeTimeService_SetDay(MONDAY);
FakeTimeService_SetMinute(1199);
LightScheduler_Wakeup();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

Dissecting this test case one line at a time, we see the test schedules the light
with id equal to 3 to turn on every day at the 1,200th minute of the day
(8 p.m.). The test takes control of the clock, telling the FakeTimeService that it
should report that it is Monday at 7:59 p.m. Then the test simulates a callback
to LightScheduler_WakeUp(), like the production TimeService will do every minute.
Finally, the test checks the expected outcome. The literal constants for
EVERYDAY and MONDAY, along with similar constants, will be part of the
LightScheduler interface.

There are no scheduled events due, so LightController functions should not be
called. The spy is debriefed after the covert mission by checking its secret
test-only interface made up of LightControllerSpy_GetLastId() and LightControllerSpy_Get-
LastState(). LightControllerSpy_GetLastId() returns the id of the light that was controlled
or LIGHT_ID_UNKNOWN when there has been no light control. LightControllerSpy_Get-
LastState() returns LIGHT_OFF, LIGHT_ON, or LIGHT_STATE_UNKNOWN. LIGHT_STATE_UNKNOWN
means that the light has not been changed since initialization. If the mission
is successful, the debrief should show that no light instructions were given.

TEST(LightScheduler, ScheduleOnEverydayNotTimeYet) looks like a decent test, but it’s
too big for a first test. There are two test doubles and skeletons of the produc-
tion code to write. In addition, all the pieces must be wired together. Still, it

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

is good to have this goal articulated. Comment out this test, and save it for
later.

A natural first test is one that specifies what should happen during initializa-
tion, like this:

tests/HomeAutomation/LightSchedulerTest.cpp
TEST(LightScheduler, NoChangeToLightsDuringInitialization)
{

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

This test can be put together more quickly and keep the feedback coming
rapidly. Nothing is needed for LightScheduler, letting us focus on the test double.

What if we have not yet chosen our OS, or the light-controlling hardware is
still on the drawing board? Does that have to paralyze us while we make those
decisions? No, it does not. We can treat those two areas as DOCs and define
interfaces that perfectly meet the needs of the code under test. Interfaces let
us break dependencies on unknowns. We develop right up to the unknown,
defining what we want from it. The tests are helping to drive the design.

There is a subtle positive side benefit to programming when you don’t know
all the details—it can lead to a more abstract interface, one that does not get
polluted with low-level implementation details. Since it does not reveal the
implementation, it allows different potential implementations for different
targets.

Write a few tests to drive the new fake, not so much to make sure the fake
works—usually there is little that can go wrong—but to document the fake’s
behavior. You could drive the fake fully from the production code, but by
writing tests for it, you also document the fake’s behavior.

You non-C++ programmers are going to have to put up with a little bit of C++
. When CppUTest is used to test C code, you have to enclose C function dec-
larations in an extern "C" block. You will see this in the following example. extern
"C" tells the compiler to generate calls to the enclosed functions using C calling
conventions. If you don’t, you will get linker errors reporting that the linker
cannot find functions you know are there. The names will look the same to
you, but not to the linker.

tests/HomeAutomation/LightControllerSpyTest.cpp
#include "CppUTest/TestHarness.h"

extern "C"
{

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpyTest.cpp
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

#include "LightControllerSpy.h"
}

TEST_GROUP(LightControllerSpy)
{

void setup()
{

LightController_Create();
}

void teardown()
{

LightController_Destroy();
}

};

TEST(LightControllerSpy, Create)
{

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

TEST(LightControllerSpy, RememberTheLastLightIdControlled)
{

LightController_On(10);
LONGS_EQUAL(10, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_ON, LightControllerSpy_GetLastState());

}

The spy’s header includes the header file of the interface it is replacing. The
spy is an implementation of the LightController interface. Including that header
is a way to stress that point.

tests/HomeAutomation/LightControllerSpy.h
#include "LightController.h"

enum
{

LIGHT_ID_UNKNOWN = -1, LIGHT_STATE_UNKNOWN = -1,
LIGHT_OFF = 0, LIGHT_ON = 1

};

int LightControllerSpy_GetLastId(void);
int LightControllerSpy_GetLastState(void);

You might wonder why the spy’s header file defines the literal values for the
light states instead of the production code header. Those values are used for
interrogating the spy during test. They would pollute the production code.

• Click HERE to purchase this book now. discuss

• 7

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.h
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

The spy’s implementation defines a dead drop,2 made from file scope data,
where the spy stores intelligence during its important covert operation.

tests/HomeAutomation/LightControllerSpy.c
#include "LightControllerSpy.h"

static int lastId;
static int lastState;

The create function initializes the spy’s dead drop.

tests/HomeAutomation/LightControllerSpy.c
void LightController_Create(void)
{

lastId = LIGHT_ID_UNKNOWN;
lastState = LIGHT_STATE_UNKNOWN;

}

During the spy’s mission, critical information is intercepted through the
interface of the replaced collaborator.

tests/HomeAutomation/LightControllerSpy.c
void LightController_On(int id)
{

lastId = id;
lastState = LIGHT_ON;

}
void LightController_Off(int id)
{

lastId = id;
lastState = LIGHT_OFF;

}

The one being spied on suspects nothing. The intelligence is retrieved from
the dead drop through secret accessor functions after the CUT is exercised.

tests/HomeAutomation/LightControllerSpy.c
int LightControllerSpy_GetLastId(void)
{

return lastId;
}
int LightControllerSpy_GetLastState(void)
{

return lastState;
}

As you can see, this spy is quite simple to write. Let’s do something similar
to take control of the clock in the next section.

2. A secret location where a spy leaves material to be picked up

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightControllerSpy.c
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

8.5 Controlling the Clock

Time is usually a big deal in embedded systems. Time, a volatile input, makes
testing a challenge. Waiting for timed events in tests makes the tests take too
long, longer than they have to be. The bottom line is that the tests have to
take over the clock.

Abstracting the clock is important too. Real-time operating systems often
define nonstandard time functions, and this can lead to portability problems.
If you want code that runs on more than one platform, abstract the clock.
The abstraction provides a perfect place to insert your fake clock. In produc-
tion, use a thin adapter to convert the embedded application’s time API to
the underlying OS calls. You get a shot of testability with a portability chaser.

needed for the TimeService is kind of the opposite of the LightControllerSpy. The test
is not interested in what the CUT passes to the TimeService. But it is interested
in controlling what the TimeService returns to the CUT. This is known as an
indirect input. Take a look at its tests to reveal its behavior:

tests/HomeAutomation/FakeTimeServiceTest.cpp
TEST(FakeTimeService, Create)
{

Time time;
TimeService_GetTime(&time);
LONGS_EQUAL(TIME_UNKNOWN, time.minuteOfDay);
LONGS_EQUAL(TIME_UNKNOWN, time.dayOfWeek);

}

TEST(FakeTimeService, Set)
{

Time time;
FakeTimeService_SetMinute(42);
FakeTimeService_SetDay(SATURDAY);
TimeService_GetTime(&time);
LONGS_EQUAL(42, time.minuteOfDay);
LONGS_EQUAL(SATURDAY, time.dayOfWeek);

}

Now that the test doubles are assembled, let’s look again at the test list in
Figure 14, Light Scheduler test list, on page ?. Like I mentioned earlier, the
list is roughly in the order we think we’ll implement them. We’ll start with
the easiest tests first.

• Click HERE to purchase this book now. discuss

Controlling the Clock • 9

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/FakeTimeServiceTest.cpp
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

8.6 Make It Work for None, Then One

The fully implemented LightScheduler will have to manage a collection of sched-
uled items. Starting with a test case that involves many scheduled events
makes for too much code. A good way to attack and conquer this problem is
to start with the cases of no scheduled items and then one scheduled item,
saving the many case for later. This is a common approach for engineering
collection behavior using TDD.

The do nothing tests provides the shortest path to a passing test. All that is
needed is the interface definitions for the production code calls. Don’t worry
that it seems that nothing is being tested. The objective here is to get these
boundary tests right. Later when the full implementation is in place, these
tests will continue to assure correct behavior of these boundary cases. You
will be tempted to put in more code than an empty function body; don’t do
it. It is a path to untested code.

It looks like there are two areas of scheduler tests. Many of the scheduler
tests will be concerned with the time and day matching, while other tests are
concerned with the managing of multiple scheduled events. You really don’t
have to decide the whole test path up front, but I find it helpful to use the
0-1-N pattern when there is collection behavior. First we handle the zero cases
where there is nothing scheduled, or no events trigger. Then we handle the
one event variation that drives the support for all the day and time variations.
After the day and time variations are passing their tests, we will shift our
focus to add support for the N cases where multiple scheduled events are
test-driven.

Here’s what the no scheduled items test looks like:

tests/HomeAutomation/LightSchedulerTest.cpp
TEST(LightScheduler, NoScheduleNothingHappens)
{

FakeTimeService_SetDay(MONDAY);
FakeTimeService_SetMinute(100);
LightScheduler_Wakeup();
LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

It may seem that there’s no need to set the day and minute on the FakeTimeSer-
vice; there are no scheduled events, so any time will do. We’ll still set the day
and minute so they are at least valid values. Only a skeleton of LightSched-
uler_Wakeup() is needed to satisfy this test.

10 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

Here is the initial TEST_GROUP():

tests/HomeAutomation/LightSchedulerTest.cpp
TEST_GROUP(LightScheduler)
{

void setup()
{

LightController_Create();
LightScheduler_Create();

}

void teardown()
{

LightScheduler_Destroy();
LightController_Destroy();

}
};

Now we’re ready for that test we used to envision the test fixture capabilities.

tests/HomeAutomation/LightSchedulerTest.cpp
TEST(LightScheduler, ScheduleOnEverydayNotTimeYet)
{

LightScheduler_ScheduleTurnOn(3, EVERYDAY, 1200);
FakeTimeService_SetDay(MONDAY);
FakeTimeService_SetMinute(1199);
LightScheduler_Wakeup();

LONGS_EQUAL(LIGHT_ID_UNKNOWN, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_STATE_UNKNOWN, LightControllerSpy_GetLastState());

}

Because no lights are actually controlled during the previous test, only empty
implementations are needed for the production code. The test drives the fixture
development and the API for scheduling a light. Also, LightScheduler_Schedule-
TurnOn() would just be a skeletal implementation like this:

src/HomeAutomation/LightScheduler.c
void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay)
{
}

void LightScheduler_Wakeup(void)
{
}

Now for the moment we’ve been waiting for; let’s turn on a light. I chose the
EVERYDAY test case because that requires less production code to pass the test
in this early stage.

• Click HERE to purchase this book now. discuss

Make It Work for None, Then One • 11

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

tests/HomeAutomation/LightSchedulerTest.cpp
TEST(LightScheduler, ScheduleOnEverydayItsTime)
{

LightScheduler_ScheduleTurnOn(3, EVERYDAY, 1200);
FakeTimeService_SetDay(MONDAY);
FakeTimeService_SetMinute(1200);

LightScheduler_Wakeup();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_ON, LightControllerSpy_GetLastState());

}

Let’s think a little about how we’ll implement the LightScheduler. We’ll need a
struct to hold the information about each schedule light control. With that struct
we’ll create an array to hold the 128 separate scheduled events (128 is the
design limit from the requirements). LightScheduler_ScheduleTurnOn(), and similar
operations, will use the next unused slot in the array. LightScheduler_Wakeup()
will go through the array and see whether any scheduled lights need to be
controlled.

Given that we have an idea of how to proceed, let’s turn on a light, scheduled
for every day at the right time. We need this struct and initialization:

src/HomeAutomation/LightScheduler.c
typedef struct
{

int id;
int minuteOfDay;

} ScheduledLightEvent;

static ScheduledLightEvent scheduledEvent;

void LightScheduler_Create(void)
{

scheduledEvent.id = UNUSED;
}

You are probably wondering why ScheduledLightEvent only has fields for id and
minuteOfDay. Also, where is the array to hold the different scheduled events?
Before we get into the whys, take a look at the implementation and see that
nothing else is yet needed.

src/HomeAutomation/LightScheduler.c
void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay)
{

scheduledEvent.id = id;
scheduledEvent.minuteOfDay = minuteOfDay;

}

12 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

void LightScheduler_Wakeup(void)
{

Time time;
TimeService_GetTime(&time);

if (scheduledEvent.id == UNUSED)
return;

if (time.minuteOfDay != scheduledEvent.minuteOfDay)
return;

LightController_On(scheduledEvent.id);
}

It is tempting to add more fields to ScheduledLightEvent and make scheduledEvent
an array. But we don’t need it yet. In Debug-Later Programming, we add all
the stuff we think we’ll need right away. There is virtually no end to “I’m going
to need it soon” thinking. So in TDD, we generally only add what is needed
by the current tests.

By that reasoning, you might question the need to introduce the Scheduled-
LightEvent data structure. I chose to introduce it now because it is not much
extra syntactical weight to carry, and it will make converting to an array
easier. I think ahead, but I act only on some things.

Why not add the array? I’d like to focus on the collection aspect of the
scheduler separately and rather not carry around the array index syntax.
These are judgment calls.

Now back to the code. Notice that the structure definition is in the .c file and
not the .h file. We’re purposely hiding those details so that the LightScheduler
can manage them.

You can see what the test list would look like if I added some of the details
of the specific tests written and scratched out the completed tests in Figure
18, LightSchedulerTestList-revised1, on page 14.

This test drives us to add the API for scheduling a light to turn off.

tests/HomeAutomation/LightSchedulerTest.cpp
TEST(LightScheduler, ScheduleOffEverydayItsTime)
{

LightScheduler_ScheduleTurnOff(3, EVERYDAY, 1200);
FakeTimeService_SetDay(MONDAY);
FakeTimeService_SetMinute(1200);
LightScheduler_Wakeup();

LONGS_EQUAL(3, LightControllerSpy_GetLastId());
LONGS_EQUAL(LIGHT_OFF, LightControllerSpy_GetLastState());

}

• Click HERE to purchase this book now. discuss

Make It Work for None, Then One • 13

http://media.pragprog.com/titles/jgade/code/tests/HomeAutomation/LightSchedulerTest.cpp
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

Figure 18— LightSchedulerTestList-revised1

Given our current tests, LightScheduler_Wakeup() can turn on or off a light that is
scheduled for EVERYDAY. We are all set to continue adding scheduling scenarios
and driving the implementation.

Here is the current state of LightScheduler_Wakeup():

src/HomeAutomation/LightScheduler.c
void LightScheduler_Wakeup(void)
{

Time time;
TimeService_GetTime(&time);
if (scheduledEvent.id == UNUSED)

return;
if (time.minuteOfDay != scheduledEvent.minuteOfDay)

return;
if (scheduledEvent.event == TURN_ON)

LightController_On(scheduledEvent.id);

else if (scheduledEvent.event == TURN_OFF)
LightController_Off(scheduledEvent.id);

}

14 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

The corresponding LightScheduler_ScheduleTurnOn() looks like the following, with
LightScheduler_ScheduleTurnOff() being almost identical.

src/HomeAutomation/LightScheduler.c
void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay)
{

scheduledEvent.minuteOfDay = minuteOfDay;
scheduledEvent.event = TURN_ON;
scheduledEvent.id = id;

}

void LightScheduler_ScheduleTurnOff(int id, Day day, int minuteOfDay)
{

scheduledEvent.minuteOfDay = minuteOfDay;
scheduledEvent.event = TURN_OFF;
scheduledEvent.id = id;

}

The LightScheduler’s interface has evolved to this point:

include/HomeAutomation/LightScheduler.h
#ifndef D_LightScheduler_H
#define D_LightScheduler_H
enum Day {

NONE=-1, EVERYDAY=10, WEEKDAY, WEEKEND,
SUNDAY=1, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

};

typedef enum Day Day;

void LightScheduler_Create(void);
void LightScheduler_ScheduleTurnOn(int id, Day day, int minuteOfDay);
void LightScheduler_ScheduleTurnOff(int id, Day day, int minuteOfDay);
void LightScheduler_Wakeup(void);
#endif /* D_LightScheduler_H */

• Click HERE to purchase this book now. discuss

Make It Work for None, Then One • 15

http://media.pragprog.com/titles/jgade/code/src/HomeAutomation/LightScheduler.c
http://media.pragprog.com/titles/jgade/code/include/HomeAutomation/LightScheduler.h
http://pragprog.com/titles/jgade
http://forums.pragprog.com/forums/jgade

