
Extracted from:

Test-Driven Development for
Embedded C

This PDF file contains pages extracted from Test-Driven Development for Embedded
C, published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Test-Driven Development for
Embedded C

James W. Grenning

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Contents

Foreword by Jack Ganssle ?

Foreword by Robert C. Martin ?

Acknowledgments ?

Preface ?

1. Test-Driven Development ?
Why Do We Need TDD? ?1.1

1.2 What Is Test-Driven Development? ?
1.3 Physics of TDD ?
1.4 The TDD Microcycle ?
1.5 TDD Benefits ?
1.6 Benefits for Embedded ?

Part I — Getting Started

2. Test-Driving Tools and Conventions ?
What Is a Unit Test Harness? ?2.1

2.2 Unity: A C-Only Test Harness ?
2.3 CppUTest: A C++ Unit Test Harness ?
2.4 Unit Tests Can Crash ?
2.5 The Four-Phase Test Pattern ?
2.6 Where Are We? ?

3. Starting a C Module ?
Elements of a Testable C Module ?3.1

3.2 What Does an LED Driver Do? ?
3.3 Write a Test List ?
3.4 Writing the First Test ?
3.5 Test-Drive the Interface Before the Internals ?

3.6 Incremental Progress ?
3.7 Test-Driven Developer State Machine ?
3.8 Tests Are FIRST ?
3.9 Where Are We? ?

4. Testing Your Way to Done ?
Grow the Solution from Simple Beginnings ?4.1

4.2 Keep the Code Clean—Refactor as You Go ?
4.3 Repeat Until Done ?
4.4 Take a Step Back Before Claiming Done ?
4.5 Where Are We? ?

5. Embedded TDD Strategy ?
The Target Hardware Bottleneck ?5.1

5.2 Benefits of Dual-Targeting ?
5.3 Risks of Dual-Target Testing ?
5.4 The Embedded TDD Cycle ?
5.5 Dual-Target Incompatibilities ?
5.6 Testing with Hardware ?
5.7 Slow Down to Go Fast ?
5.8 Where Are We? ?

6. Yeah, but... ?
We Don’t Have Time ?6.1

6.2 Why Not Write Tests After the Code? ?
6.3 We’ll Have to Maintain the Tests ?
6.4 Unit Tests Don’t Find All the Bugs ?
6.5 We Have a Long Build Time ?
6.6 We Have Existing Code ?
6.7 We Have Constrained Memory ?
6.8 We Have to Interact with Hardware ?
6.9 Why a C++ Test Harness for Testing C? ?
6.10 Where Are We? ?

Part II — Testing Modules with Collaborators

7. Introducing Test Doubles ?
Collaborators ?7.1

7.2 Breaking Dependencies ?
7.3 When to Use a Test Double ?

Contents • vi

7.4 Faking It in C, What’s Next ?
7.5 Where Are We? ?

8. Spying on the Production Code ?
Light Scheduler Test List ?8.1

8.2 Dependencies on Hardware and OS ?
8.3 Link-Time Substitution ?
8.4 Spying on the Code Under Test ?
8.5 Controlling the Clock ?
8.6 Make It Work for None, Then One ?
8.7 Make It Work for Many ?
8.8 Where Are We? ?

9. Runtime-Bound Test Doubles ?
Testing Randomness ?9.1

9.2 Faking with a Function Pointer ?
9.3 Surgically Inserted Spy ?
9.4 Verifying Output with a Spy ?
9.5 Where Are We? ?

10. The Mock Object ?
Flash Driver ?10.1

10.2 MockIO ?
10.3 Test-Driving the Driver ?
10.4 Simulating a Device Timeout ?
10.5 Is It Worth It? ?
10.6 Mocking with CppUMock ?
10.7 Generating Mocks ?
10.8 Where Are We? ?

Part III — Design and Continuous Improvement

11. SOLID, Flexible, and Testable Designs ?
SOLID Design Principles ?11.1

11.2 SOLID C Design Models ?
11.3 Evolving Requirements and a Problem Design ?
11.4 Improving the Design with Dynamic Interface ?
11.5 More Flexibility with Per-Type Dynamic Interface ?
11.6 How Much Design Is Enough? ?
11.7 Where Are We? ?

Contents • vii

12. Refactoring ?
Two Values of Software ?12.1

12.2 Three Critical Skills ?
12.3 Code Smells and How to Improve Them ?
12.4 Transforming the Code ?
12.5 But What About Performance and Size? ?
12.6 Where Are We? ?

13. Adding Tests to Legacy Code ?
Legacy Code Change Policy ?13.1

13.2 Boy Scout Principle ?
13.3 Legacy Change Algorithm ?
13.4 Test Points ?
13.5 Two-Stage struct Initialization ?
13.6 Crash to Pass ?
13.7 Characterization Tests ?
13.8 Learning Tests for Third-Party Code ?
13.9 Test-Driven Bug Fixes ?
13.10 Add Strategic Tests ?
13.11 Where Are We? ?

14. Test Patterns and Antipatterns ?
Ramble-on Test Antipattern ?14.1

14.2 Copy-Paste-Tweak-Repeat Antipattern ?
14.3 Sore Thumb Test Cases Antipattern ?
14.4 Duplication Between Test Groups Antipattern ?
14.5 Test Disrespect Antipattern ?
14.6 Behavior-Driven Development Test Pattern ?
14.7 Where Are We? ?

15. Closing Thoughts ?

Part IV — Appendixes

A1. Development System Test Environment ?
A1.1 Development System Tool Chain ?
A1.2 Full Test Build makefile ?
A1.3 Smaller Test Builds ?

Contents • viii

A2. Unity Quick Reference ?
Unity Test File ?A2.1

A2.2 Unity Test main ?
A2.3 Unity TEST Condition Checks ?
A2.4 Command-Line Options ?
A2.5 Unity in Your Target ?

A3. CppUTest Quick Reference ?
The CppUTest Test File ?A3.1

A3.2 Test Main ?
A3.3 TEST Condition Checks ?
A3.4 Test Execution Order ?
A3.5 Scripts to Create Starter Files ?
A3.6 CppUTest in Your Target ?
A3.7 Convert CppUTest Tests to Unity ?

A4. LedDriver After Getting Started ?
LedDriver First Few Tests in Unity ?A4.1

A4.2 LedDriver First Few Tests in CppUTest ?
A4.3 LedDriver Early Interface ?
A4.4 LedDriver Skeletal Implementation ?

A5. Example OS Isolation Layer ?
Test Cases to Assure Substitutable Behavior ?A5.1

A5.2 POSIX Implementation ?
A5.3 Micrium RTOS Implementation ?
A5.4 Win32 Implementation ?
A5.5 Burden the Layer, Not the Application ?

A6. Bibliography ?

Index ?

ix • Contents

